BACLOFENIN TABLETLEERDE FLUORESKAMİN İLE SPEKTROFLUORIMETRİK MIKTAR TAYNI*

SPECTROFLUORIMETRIC DETERMINATION OF BACLOFEN IN TABLETS WITH FLUORESCAMINE

Sedef ATMACA** – Sevgi TATAR**

SUMMARY

In this study, a spectrofluorimetric method has been developed for the assay of baclofen. The method depends on the formation of a fluorophore between the drug and fluorescamine. The derivatisation reaction proceeded quantitatively at pH 9.0 and room temperature within 5 min when the molar ratio of reagent to baclofen was 100. The fluorescence intensity was measured at 490 nm using 365 nm excitation filter. Linearity was observed over the concentration range 10-1250 ng/ml of baclofen. The method was applied to the determination of baclofen in tablets and the results were statistically compared with those obtained by the official method.

ÖZET

Bu çalışmada, baklofen için spektrofluorimetrik bir tayın yöntemi geliştirilmişdir. Yöntem, baklofen ile fluoreskamin arasında bir fluorofor oluşmasına dayanmaktadır. Türevleme reaksiyonu pH 9.0 da, belirli/amin molar oran 100 olduğunda, oda sıcaklığında 5 dakik içinde kantitatif olarak yorumlandı. Fluoresans şiddeti, 365 nm ekstansyonfiltresi kullanılarak 490 nm de ölçüldü. 10-1250 ng/ml baklofen konstantasyonları aralığında doğruluğunu gözlemledi. Yöntem baklofen içeren tabletlerde uygulandı ve sonucalar, farmakope yöntemi ile elde edilen sonuçlarla istatistiksel olarak kıyaslandı.

INTRODUCTION

Baclofen, γ-aminobenzyl-β-(p-chlorophenyl)butyric acid has been commonly used for controlling muscle spasticity. Various methods including UV (1) and visible (2) spectrophotometry, spectrofluorimetry (3), GC (4) and HPLC (5) have been reported for the assay of this drug in both tablets and biological materials.

Fluorescamine, 4-phenylspiro[furan-2(3H),1-pthalal]-3,3'-dione reacts rapidly with primary amines to give highly fluorescent pyrrolinone derivatives (6-8).

This study presents a simple and sensitive spectrofluorimetric method for the determination of baclofen using thi: reagent.

*Presented at First International Meeting on Pharmacy and Pharmaceutical Sciences, Istanbul, 4-7 September 1994.
**Department of Analytical Chemistry, Faculty of Pharmacy, University of Istanbul, 34452 Beyazit, Istanbul,Turkey.
EXPERIMENTAL

**Instrument**: A Zeiss PMQ II spectrophotometer equipped with ZFM 4 fluorescence attachment and St 41 mercury lamp was used. All measurements were carried out at 490 nm using 365 nm filter for excitation.

**Chemicals**: Baclofen and its tablets (Lioresal®) were kindly provided from Ciba-Geigy, Istanbul, Turkey. Fluorescamine was purchased from Aldrich Chem. Co., Milwaukee, WI, USA. Other chemicals were analytical-reagent grade.

**Solutions**: a) **Standard solutions**: About 10 mg of baclofen, accurately weighed, was dissolved in 100 ml of water. Standard solutions (0.08-0.4, 0.4-2 and 2-10 µg/ml) were prepared from this solution by appropriate dilutions with water. b) **Sample solution**: Tablet powder, equivalent to about 15 mg of baclofen was accurately weighed and transferred into a 50 ml calibrated flask. 30 ml of water was added and shaken mechanically for 15 min. The volume was diluted with water, mixed and filtered. A 1 ml volume of the filtrate was adjusted to 50 ml with water in a calibrated flask. c) **Reagent solution**: Fluorescamine was dissolved in acetone to give a concentration of 0.13% (w/v) and protected from light. d) **Reference standard solution**: Prepared by diluting a stock solution of quinone sulphate (10 µg/ml in 0.1N H2SO4 solution). Measuring system of the instrument was calibrated by using this solution. e) **Buffer solution**: Disodium tetraborate solution (0.025 M) was adjusted to pH 9.0 with 0.1 N NaOH solution.

**Assay procedure**: An aliquot of 0.5 ml of standard and sample solution were placed into a 10 ml glass, stoppered test-tube and 3 ml of buffer solution was added. While vortex-mixing the contents of the tube, 0.5 ml of reagent solution was added rapidly and the mixing was continued for 30 sec. After 15 min the fluorescence intensity was measured at 490 nm while exiting at 365 nm against a blank prepared similarly. The fluorescence intensity of the reference solution, with appropriate concentration, was also measured at the same wavelength combination.

Calibration graphs for three concentration ranges were prepared by plotting the concentration against the relative fluorescence intensity (I/I0). The amount of baclofen in tablets was calculated from the concentration range 250-1250 µg.

**RESULTS AND DISCUSSION**

The reaction between bac derivative (Scheme). Several e phI, amount of the reagent, rea

![Chemical Structure](image)

In order to obtain the op ranges. The results shown obtained at pH 9.0.

![Graph](image)
in tablets was calculated from the regression equation of the calibration graph over the concentration range 250-1250 ng/ml.

RESULTS AND DISCUSSION

The reaction between baclofen and fluorescamine produced a highly fluorescent derivative (Scheme). Several experimental parameters, affecting the reaction such as pH, amount of the reagent, reaction time were optimised.

![Reaction Scheme](image)

In order to obtain the optimum pH the reaction was carried out at different pH ranges. The results shown in Fig. 1 indicated that maximum fluorescence was obtained at pH 9.0.

![Fluorescence intensity vs pH](image)

**Fig. 1** Effect of pH on the reaction of baclofen with fluorescamine
The reagent amount required was examined by changing the mole ratio of fluorescamine to baclofen. A 100-fold molar excess of reagent was found to be necessary to complete the reaction (Fig. 2).

![Graph showing fluorescence intensity](image)

Fig. 2 Effect of reagent concentration on the reaction of baclofen with fluorescamine

The fluorescence intensity reached a maximum within 5 min and measured at a wavelength combination of 395 and 490 nm. The derivative was stable in reaction medium for at least 30 min in dark.

Under the optimum conditions described above a linear correlation was obtained between \( I_F \) and over the concentration range 10-1250 ng/ml. The regression equations were \( I_F = 0.120 C + 0.510 (r=0.9991) \), \( I_F = 0.490 C + 0.380 (r=0.9998) \) and \( I_F = 0.348 C + 1.021 (r=0.9999) \). for 10-50, 50-250 and 250-1250 ng/ml concentration ranges respectively.

The present method was also applied to the assay of tablets and the results were compared with those obtained by the official method (2) in terms of t- and F-tests. There is no significant difference between the two methods. Statistical evaluations were shown in Table.

<table>
<thead>
<tr>
<th>Statistical value</th>
<th>( P )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>Recovery (%)</td>
<td></td>
</tr>
<tr>
<td>RSD (%)</td>
<td></td>
</tr>
<tr>
<td>Confidence limits</td>
<td></td>
</tr>
<tr>
<td>t-test of significance</td>
<td></td>
</tr>
<tr>
<td>F-test of significance</td>
<td></td>
</tr>
</tbody>
</table>

* \( n=6 \)  

The present method is suitable for heating nor organic solvent in pharmaceutical analysis.

1. Kramar J., Kramarova J.
2. United States Pharmacopeia, Pharmacopeial Convention
3. Erosy L.: Analyst, 110, 881
4. Degen, P.H., Kriess, W.: J. Cl
8. Iskender, G., Orak, F.: Bull

(Received October 15, 1994)
Table  Comparison of the results obtained by proposed and official methods for the assay of baclofen in tablets (each tablet contains 10 mg of baclofen)

<table>
<thead>
<tr>
<th>Statistical value</th>
<th>Proposed method</th>
<th>Official method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>10.15</td>
<td>10.18</td>
</tr>
<tr>
<td>Recovery (%)</td>
<td>101.50</td>
<td>101.82</td>
</tr>
<tr>
<td>RSD (%)</td>
<td>0.38</td>
<td>0.34</td>
</tr>
<tr>
<td>Confidence limits</td>
<td>10.11-10.19</td>
<td>10.14-10.22</td>
</tr>
<tr>
<td>t-test of significance*</td>
<td>2.19</td>
<td>* n=6 p=0.05 t=2.23 F=5.05</td>
</tr>
<tr>
<td>F-test of significance*</td>
<td>2.31</td>
<td></td>
</tr>
</tbody>
</table>

The present method is sensitive and specific. It is also simple, because neither heating nor organic solvent extraction are needed. It can be applied for the routine pharmaceutical analysis.

REFERENCES


(Received October 15, 1984)