COMPARISON OF GLYCOSYLATED ALBUMIN WITH OTHER
GLYCOSYLATED SERUM PROTEINS

N. EMEKLİ† - F. KARAKULE†* - A. YARAT†*

ABSTRACT

This study was performed on 30 diabetic and healthy controls. Fasting blood glucose, glycosylated albumin, glycosylated hemoglobin, fructoseamine, total protein, globulin and albumin were assayed in both groups. Albumin was isolated from the serum by precipitation using 22.2% sodium sulphate and the glycosylated albumin level determined by the TBA method. Other parameters were determined by commercial assay procedures. A good correlation was found between glycosylated albumin and hemoglobin A1c and fructoseamine values. All of these levels were found to be significantly higher in the diabetic patients. However no significant difference was found in total protein, albumin, globulin and hemoglobin levels.

Key Words: Glycosylated albumin, glycosylated hemoglobin, diabetes, fructoseamine, sodium sulphate precipitation.

† Marmara University, Faculty of Dentistry, Department of Biochemistry, Nişantaşı, İstanbul, TURKEY.
* I. Pakize Tarzi Laboratory, Nişantaşı, İstanbul, TURKEY.
INTRODUCTION

After glycosylated hemoglobin was first reported by Allen et al (1) and its clinical importance understood, the investigation of nonenzymatic glycosylation of other blood and tissue proteins begun. The nonenzymatic glycosylation of many proteins has been found to increase in diabetic patients (2,5,6,7,8,9,10,11,12,13,14,34).

In diabetes mellitus, because of hyperglycemia, glucose binds nonenzymatically to protein free amino groups. First the unstable "Schiff base" an aldimine is formed which later by Amadori rearrangement converts to stable ketoamine product. This reaction is called nonenzymatic glycosylation. Its a first step of the Millard reaction. The second step is nonenzymatic browning in which advanced glycosylated products with high cross linked, brown yellow fluorescence, insoluble pigmented carbohydrate-protein polymers are formed. Since nonenzymatic glycosylation and then nonenzymatic browning cause the structural and functional changes in protein, it has been suggested that they may be factors underlying diabetic complications (4,6,7,15,16,17).

It has also been found that bilirubin and the drug binding capacity of albumin decreases due to nonenzymatic glycosylation in vitro, however the in vivo situation is still not clear. The reduced solubility of glycosylated albumin has been reported (18,19,20,21,22).

Glycosylated protein parameters for diabetes control glycosylated laboratories for which is recommended that glycosyl reflect average blood determined for short te.

In these study, a hemoglobin, fructoseamin healthy controls and other.

MATERIALS AND METHODS

Thirty diabetic and female each of age range type was not taken into glycosylated albumin, gly total protein, globulin, a These parameters were al.

Albumin was isolated from 22.2% sodium sulphate
centrifugating at 1500 g and used for the determin the tiobarbituric acid meth was confirmed by cellulo.

The following kits were
Glycosylated proteins are now used as the control parameters for diabetes mellitus. For long term glycemic control glycosylated hemoglobin are now used in many laboratories for which many commercial kits are available. Its recomended that glycosylated serum proteins and albumin which reflect average blood glucose for one or two week, can be determined for short term glycemic control (23,24,25,26,27).

In these study, glycosylated albumin, glycosylated hemoglobin, fructoseamime were determined in diabetics and healthy controls and checked for correlated for with one an other.

MATERIALS AND METHODS

Thirty diabetic and 30 healty controls (15 male and 15 female each) of age range 40 to 70 years who attending to 1. Pakize Tarzi Clinic, were included in this study. Diabetic type was not taken into consideration. Fasting blood glucose, glycosylated albumin, glycosylated hemoglobin, fructoseamime, total protein, globulin, albumin were assayed in both groups. These parameters were also evaluated with respect to sex.

Albumin was isolated from the serum by precipitation using 22.2 % sodium sulphate. Globulin precipitate was seperated by centrifugating at 1500 g for 10 min. The supernatant was taken and used for the determination of glycosylated albumin by the tiobarbuturic acid method (28,29). The purity of albumin was confirmed by cellulose acetate electrophoresis (Helena). The following kits were used to determine the following
parameters; glycosylated hemoglobin, total protein and albumin; Eagles, serum fructoseamine by Roche, blood glucose: Biotrol and total hemoglobin: Boehringer.

The results were evaluated by using "t" test and regression analysis using the Microstat statistical computer package.

RESULTS

Glycosylated albumin, glycosylated hemoglobin and fructoseamine levels were found to be significantly higher in the diabetics. In contrast to glycosylated proteins, total protein, albumin, globulin and hemoglobin values between healthy donors and diabetics were not found significantly different (Table 1). Nor was there any significant correlation between these parameters and glycosylated proteins (Table 2). A good correlation was seen between glycosylated albumin, glycosylated hemoglobin and fructoseamine values. These parameters also correlated with fasting blood glucose (Table 2).

The findings with respect to sex are shown in Tables 3 and 4. It is seen that the glycosylated albumin levels in women were less significantly higher than the men in the diabetic group, than in the control group. These tables also show that for both control and diabetic groups the serum albumin levels in women were significantly less than the men.
Table 1: Mean values of all parameters in diabetics and controls and significance of differences (SD: Standard deviation).

<table>
<thead>
<tr>
<th></th>
<th>Control Group (n=30)</th>
<th>Diabetic Group (n=30)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Glucose (mg/dL)</td>
<td>81.1 ± 8.99</td>
<td>178.0 ± 8.18</td>
<td>0.0001</td>
</tr>
<tr>
<td>Hemoglobin (%)</td>
<td>13.4 ± 1.03</td>
<td>13.4 ± 0.77</td>
<td>0.45</td>
</tr>
<tr>
<td>Serum Albumin (g/dL)</td>
<td>4.72 ± 0.57</td>
<td>4.88 ± 0.57</td>
<td>0.15</td>
</tr>
<tr>
<td>Serum Globulin (%)</td>
<td>2.58 ± 0.59</td>
<td>2.62 ± 0.52</td>
<td>0.374</td>
</tr>
<tr>
<td>Total Protein (%)</td>
<td>7.29 ± 0.35</td>
<td>7.50 ± 0.36</td>
<td>0.01</td>
</tr>
<tr>
<td>Glycosylated Albumin (umol/1000 g Alb)</td>
<td>9.06 ± 1.83</td>
<td>13.9 ± 4.22</td>
<td>0.0001</td>
</tr>
<tr>
<td>Hba1c (%)</td>
<td>6.78 ± 0.67</td>
<td>10.80 ± 1.94</td>
<td>0.0001</td>
</tr>
<tr>
<td>Fructoseamine (umol/L)</td>
<td>2.14 ± 0.13</td>
<td>3.53 ± 0.81</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Table 2: Regression analysis

<table>
<thead>
<tr>
<th>Variables</th>
<th>Correlation coefficient (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly.Alb - Serum Glucose</td>
<td>0.8271</td>
</tr>
<tr>
<td>Gly.Alb - Fructoseamine</td>
<td>0.7571</td>
</tr>
<tr>
<td>Gly.Alb - Albumin</td>
<td>-0.2271</td>
</tr>
<tr>
<td>Gly.Alb - Total protein</td>
<td>0.1624</td>
</tr>
<tr>
<td>Gly.Alb - Hemoglobin</td>
<td>0.0218</td>
</tr>
<tr>
<td>Gly.Alb - Hba1c</td>
<td>0.6741</td>
</tr>
<tr>
<td>Hba1c - Fructoseamine</td>
<td>0.7374</td>
</tr>
<tr>
<td>Hba1c - Serum glucose</td>
<td>0.6676</td>
</tr>
<tr>
<td>Fructoseamine - Serum glucose</td>
<td>0.8232</td>
</tr>
</tbody>
</table>
Table 3: Comparison of all parameters with respect to sex in control group (SD: Standard deviation)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Women (n=15)</th>
<th>Men (n=15)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Glucose (mg/dL)</td>
<td>83.33</td>
<td>78.80</td>
<td>0.0857</td>
</tr>
<tr>
<td>Hemoglobin (%)</td>
<td>13.03</td>
<td>13.79</td>
<td>0.0203</td>
</tr>
<tr>
<td>Serum Albumin (%)</td>
<td>4.63</td>
<td>4.81</td>
<td>0.1899</td>
</tr>
<tr>
<td>Serum Globulin (%)</td>
<td>2.76</td>
<td>2.39</td>
<td>0.0397</td>
</tr>
<tr>
<td>Total Protein (%)</td>
<td>7.39</td>
<td>7.20</td>
<td>0.0691</td>
</tr>
<tr>
<td>Glycosylated Albumin (umol/L)</td>
<td>10.12</td>
<td>8.02</td>
<td>0.0001</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>6.94</td>
<td>6.63</td>
<td>0.1045</td>
</tr>
<tr>
<td>Fructoseamine (umol/L)</td>
<td>2.19</td>
<td>2.03</td>
<td>0.0147</td>
</tr>
</tbody>
</table>

Table 4: Comparison of all parameters with respect to sex in diabetic group (SD: Standard deviation)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Women (n=15)</th>
<th>Men (n=15)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Glucose (mg/dL)</td>
<td>196.20</td>
<td>159.87</td>
<td>0.1151</td>
</tr>
<tr>
<td>Hemoglobin (%)</td>
<td>13.03</td>
<td>13.84</td>
<td>0.0001</td>
</tr>
<tr>
<td>Serum Albumin (%)</td>
<td>4.66</td>
<td>5.09</td>
<td>0.0171</td>
</tr>
<tr>
<td>Serum Globulin (%)</td>
<td>2.82</td>
<td>2.49</td>
<td>0.0185</td>
</tr>
<tr>
<td>Total Protein (%)</td>
<td>7.48</td>
<td>7.52</td>
<td>0.3825</td>
</tr>
<tr>
<td>Glycosylated Albumin (umol/L)</td>
<td>15.19</td>
<td>12.66</td>
<td>0.0508</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>10.45</td>
<td>11.17</td>
<td>0.1538</td>
</tr>
<tr>
<td>Fructoseamine (umol/L)</td>
<td>3.60</td>
<td>3.45</td>
<td>0.3291</td>
</tr>
</tbody>
</table>

DISCUSSION

For short term glycosylated albumin is used while in affinity chromatography and then in the Radio Immunassay determined by using monoclonal antibody albumin is determined. However, there are few methods used. In affinity chromatography and then in the Radio Immunassay determined by using monoclonal antibody albumin is determined. In the Radio Immunassay determined by using monoclonal antibody albumin was isolated cheap method of precipitate purity of albumin was measured spectrophotometer. The normal albumin was determined by TBA test. In diabetic clinics, preferred to fasting blood reflects average past blood glucose taken from patients. Glycosylated hemoglobin monitoring diabetes. This study and significantly correlation between one o
DISCUSSION

For short term glycemic control determination of glycosylated albumin is one of the recommended methods (35). However, there are few methods in literature for determining it. In affinity chromatography, glycosylated and nonglycosylated albumin are separated, then glycosylated albumin is determined specifically (26). In some studies glycosylated albumin is purified by DEAE cellulose chromatography and then assayed by the TBA method (28,30).

In the Radio Immunassay (RIA) method, glycosylated albumin is determined by using monoclonal antibodies (31). In the present study albumin was isolated from serum by the simple and cheap method of precipitation with 22.2% sodium sulphate. Then purity of albumin was assayed by electrophoresis and spectrophotometer. The nonenzymatic glycosylation of albumin was determined by TBA method and found to 50% higher in diabetics than in controls.

In diabetic clinics glycosylated proteins determination is preferred to fasting blood glucose because the former better reflects average past blood glucose levels not being affected by daily blood glucose fluctuations. Blood samples can be taken from patients at any time. Fructosamine and glycosylated hemoglobin are the factors mostly used for monitoring diabetes. These were determined in the present study and significantly increase in diabetics and positive correlation between one other and glycosylated albumin was.
found as did others\((23,24,25,26,27,32)\).

Garlic and Mazer investigated glucose binding site in human albumin. They found glucose residues on 534-525th amino acids and that this peptide could not be cleaved by trypsine. Of normal serum albumin 10-12 percent has been found to be glycosylated \((33)\).

Our results was consistent with those of Kemo et al who assayed glycosylated albumin in blood samples of type I diabetic children by affinity chromatography and found it correlated positively with glycosylated hemoglobin \((22)\).

Dolhofer and Wieland purified serum or plasma albumin from type I and type II diabetic patients by DEAE cellulose chromatography determining glycosylated albumin by the TBA method and using hydroxymethylfurfuraldehyde \((HMF)\) as a standard \((ours:fructose)\) and finding an increase in diabetics \((30)\).

Ohe et al determined glycosylated albumin levels in serum samples of diabetic patients and healthy controls by the RIA method, obtaining results were similar to ours \((31)\).

Miyamoto et al measured higher glycosylated albumin levels in type I diabetic children than controls using high performance liquid chromatography \((HPLC)\)\((34)\), reporting glycosylated albumin not to change with age. They did find however an increase in fructoseamine levels with age. A better correlation between glycosylated albumin and blood glucose has been found than between fructoseamine and blood glucose \((34)\).
Ryle et al investigated the effect of diet on glycosylated albumin and glycosylated hemoglobin. They formed two dietary groups: 1) Fibrous nutrients with less glucose 2) Less fibrous nutrients with more glucose. In neither group did they find change in glucose tolerance or glycosylated hemoglobin levels within the first two hours. After six weeks, in first diet group a decrease in percent glycosylated albumin, an increase in it in the second diet group, was reported (35).

Ardawi et al determined glycosylated albumin, glycosylated hemoglobin and fructoseamine and subsequently recommended them for mid-, long-, and short-term glycemic control respectively (36).

Today there are many commercial kits for glycosylated hemoglobin and fructoseamine assaying. However, for glycosylated albumin there are more suitable for routine clinical laboratories. Mainly chromatographic methods are used. It is therefore proposed that the simple and time-saving method of isolating and determining glycosylated albumin utilized in this study be used for short-term monitoring of diabetic patients.
REFERENCES

13 - Yarat, A., Emekli, N.: Glikozilileyt hemoglobin of Turkish Diabetolo

14 - Goldman, Sajman: None receptors results in tes 39:308-311, (1990)

26- Johnson, R.N., Metcalf, approach to the es index of diabetic co
29- Parker, K.M., England F.E.: Improved colorin lobin, Clinical Chemis
32- Hughes, R.C.: Membrane structure and f London. p. 182-228,(197
33- Garlick, R.L. and Mazer nonenzymatic glycosyl into. J. Biol. Chem. 258:

Mar. Univ. Ecz. Der.,

GGT (Gamma-Glutamylperoxidation, Cholestiramine The Platelets of Norm)

Azize YAMAN* **

Between various functional and biochemical studies, the membrane alterations accompany the process of atherogenesis. GGT (gamma-glutamyltranspeptidase) was observed in the cases of atherosclerosis.

GGT is characterized and correlated with the activity of frozen and thawed platelet fractions. In the case of platelet aggregation, the glutathione level was increased.

Key words: Human platelet, Atherosclerosis, membrane.

* Department of Biochemistry, F \ TURKEY.
** Hemostasis and Thrombosis Res University, Istanbul, TURKEY.