PRECLINICAL ANTITUMOR ACTIVITY OF A NOVEL OLIVACINE DERIVATIVE: S 16020-2 (NSC-659687)

ABSTRACT

Structural modifications to develop olivacine analogs with reduced cross-resistance and side effects resulted in the discovery of S 16020-2. This drug showed a very potent cytotoxic effect in vitro and a high therapeutic antitumor activity in vivo. 60 % of P388-bearing mice were cured following the administration of 60 mg/kg/day (with an intermittent schedule) x 3. The drug was still significantly active against the resistant P388/VCR model while adriamycin was totally inactive. Three intermittent injections of 40 mg/kg induced 100 % cure in established Lewis lung carcinoma. Xenografts of human H-69 small cell lung carcinoma and H460 non small cell lung carcinoma were significantly sensitive to S 16020-2. These properties deserve further pharmacotoxicological studies.

INTRODUCTION

Ellipticine and its analogs are known to induce DNA damage, chromosomal aberrations and sister chromatid associated with cytotoxicity in target tumor cells (Pommier et al., 1985; Auclair et al., 1987; Pommier et al., 1988; Novello et al., 1994) probably acting as topoisomerase II poisons (Pommier et al., 1985).

Ellipticine is a weak DNA binder and the addition of substituents such as 9-hydroxy group increases both DNA binding, G.C base-pair selectivity of binding and in vitro cytotoxicity (Auclair 1987, Schwaller et al., 1989). Non-intercalating analogs of ellipticine are inactive as antitumor agents, supporting the hypothesis that intercalation is necessary but not sufficient for antitumor activity. Extension of ellipticine series by the synthesis of various heterocyclic derivatives bearing [(dialkylamino)alkyl]amino side chains led to a number of new derivatives which display high antitumor properties in experimental models (Nguyen et al., 1987; Bisagni et al., 1988; Atassi et al., 1989; Nguyen et al., 1992). In all cases, the basic side chains seem to play a key role, either to increase or to confer the antitumor properties. This observation prompted Bisagni’s group to undertake the synthesis of the 1-(N-substituted carbamoyl)-9-methoxy-(and 9-hydroxy)-6H-pyrrolo[4,3-b]carbazoles of the biological active chromophore olivacine (Jasztold-Howorko et al., 1994).

This structural modification to develop olivacine analogs with reduced cross-resistance and less side effects resulted in the discovery of S 16020-2 or 5,6-dimethyl-9-hydroxy-1 (N,N-dimethylamino-ethylaminocarbonyl)-6Hpyrrolo[4,3-b]carbazole dichloro hydrate (fig.1).

This paper reports the antitumor properties of S 16020-2 both in vitro and in vivo tumor models including resistant cell lines, a murine solid tumor and human tumor xenografts in nude mice.

* Institut de Recherches Servier-Suresnes, FRANCE.
** Institut Curie-Orsay, FRANCE.
RESULTS

Inhibition of cellular proliferation

Fig. 2 shows the inhibition of H460 adriamycin (ADR) and elliptinium ACC. The dose response curve was obtained exponential phase of growth. The cells, after adding 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, were incubated for 4 hours at 37°C. Supernatant aspirated and the formazan for 30 sec. The optical density was measured. S 16020-2 appeared as potent as ADF resistance was induced by VCR, the P. S 16020-2. Moreover, this cell line, phenotype appeared as sensitive to S 1.

In vivo antitumor activity

Leukemia

The P388 lymphocytic leukemia subline were inoculated (10^6 cells) each day 0. S 16020-2 was administered. Percentage of survival in tumors treated with the survival conditions as a combination of antitumor effect at all the doses 20% and 60% of controls were wider range between the mininum 50% S 16020-2 indicates the higher leukemia, in which the resistance and ADR after an IV administration, good antitumor effect but no lon.

Lung carcinomas

1) Lewis lung carcinoma (LLC)

To evaluate the antitumor effect, small fragments of the tumor were inoculated. S 16020-2 was administered IP following the same schedule. Doses, a high increase in life span induce 100% cure at 40 mg/kg/d.
inhibition of cellular proliferation

Fig. 2 shows the inhibition of H460 cell proliferation by S 16020-2 in comparison with adriamycin (ADR) and elliptinium acetate (ELP).

The dose response curve was obtained after addition of the compounds to tumor cells in the exponential phase of growth. The cells were incubated at 37°C for 4 doubling times. After adding 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, Sigma), the cells were incubated for 4 hours at 37°C. The plates were then centrifuged (1600g, 10 min), the supernatant aspirated and the formazan solubilized by 100 μL of DMSO under mild shaking for 30 sec. The optical density was read at 540 nM with a plate reader (Multiskan MCC, Labystem) connected to a computer.

S 16020-2 appeared as potent as ADR in inhibiting H460 proliferation. The cell lines whose resistance was induced by VCR, the P388/VCR-20, appeared to be resistant to ADR but not to S 16020-2. Moreover, this cell line, which display the classical multidrug resistance (MDR) phenotype appeared as sensitive to S 16020-2 as its sensitive parental counterparts (fig. 3).

in vivo antitumor activity

Leukemia

The P388 lymphocytic leukemia (sensitive line) and the resistant P388/VCR-20 subline were inoculated (10⁶ cells per mouse) intraperitoneally (IP) to BDF1 mice on day 0. S 16020-2 was administered intravenously (IV) on days 1, 5, 9. Fig. 4 shows the percentage of survival in treated animals bearing the sensitive P388 leukemia in comparison with the survival of the control group. ADR was used under the same experimental conditions as positive controls. S 16020-2 showed an important antitumor effect at all the doses used ranging from 10 mg/kg/day to 80 mg/kg/day, 20% and 60% of cures were observed at 40 and 60 mg/kg/day, respectively. The wider range between the minimum effective dose and the optimal dose obtained for S 16020-2 indicates the higher therapeutic index of this drug. The P388/VCR-20 leukemia, in which the resistance was induced by VCR, was totally resistant to VCR and ADR after an IV administration on days 1, 5, 9 (fig. 5) while S 16020-2 retained a good antitumor effect but no long term survivors were registered in this model.

Lung carcinomas

1) Lewis lung carcinoma (LLC)

To evaluate the antitumor effect of S 16020-2 in this highly metastatic tumor model, small fragments of the tumor were implanted subcutaneously (SC) on day 0 in BDF1 mice. S 16020-2 was administered IV on days 3, 6, 9 while endoxan was administered IP following the same schedule. The 2 drugs were active and induced at their optimal doses, a high increase in life span of treated mice. However, S 16020-2 was able to induce 100% cure at 40 mg/kg/day (fig. 6).
FIG. 2: Inhibition of H460 cells growth by S 16020-2 (□).
It is determined by a proliferation inhibition assay expressed as percentage of untreated controls. Cytotoxicity of adriamycin (ADR) (■) and elliptinium acetate (ELP) (▲) is represented.

FIG. 3: Inhibition of P388 sensitive (□, △) and P388/VCR-20 resistant (■,▲) leukemia cells proliferation by exposure to variant concentrations of S 16020-2 and adriamycin (ADR)

FIG. 4: Therapeutic effect of S 16020-2.
10⁶ cells were inoculated on day 0. The doses indicated. The curves represent the groups as a function of time. Adriamycin

FIG. 5: Therapeutic effect of S 16020-2.
10⁶ cells were inoculated in mice in day 1. The curves represent the percentage of function of time.
FIG. 4: Therapeutic effect of S 16020-2 against the P388 sensitive leukemia.

10^6 cells were inoculated on day 0. The drugs were administered IV on days 1, 5 and 9 at the doses indicated. The curves represent the percentage of survival mice in treated and control groups as a function of time. Adriamycin (ADR) is used as reference compound.

FIG. 5: Therapeutic effect of S 16020-2 against the P388/VCR resistant leukemia.

10^6 cells were inoculated in mice in day 0. The drugs were administered IV on days 1, 5 and 9. The curves represent the percentage of survival mice in treated and control groups as a function of time.
FIG. 6: Therapeutic effect of S 16020-2 against the Lewis lung carcinoma in mice.

The tumor was implanted SC on day 0 and the drugs were administered on days 3, 7 and 11. The IV route was used for S 16020-2 while the IP route was used for reference compound, endoxan. The curves represent the percentage of survival mice in treated and control groups.

2) NCI-H460 non small cell lung carcinoma xenograft

Tumor fragments were transplanted SC bilaterally in the flanks of nude mice by a 10-gauge needle. When the tumor reached an average of 4-6 mm in diameter (considered day 0), S 16020-2 and ADR were administered IV on days 0, 7, 14. Fig. 7 shows the tumor growth curves of treated groups in comparison with the control group. In the groups of S16020-2 treated mice, we observed an important antitumor effect at 90 and 60 mg/kg/day while ADR, administered at the optimal dose of 10 mg/kg/day appeared less active.

3) NCI-H69 small cell lung carcinoma xenograft

The methodology was the same as for NCI-H460. S 16020-2 showed an important dose-dependent tumor growth inhibition (fig. 8). In this experiment, S 16020-2 at 60 mg/kg/day showed the same activity obtained by ADR at the optimal dose of 9 mg/kg/day while the optimal dose of S 16020-2 was the most active treatment.

FIG. 7: Antitumor activity of S xenograft in nude mice.

Tumor fragments were transplanted diameter (day 0). The drugs were at the tumor growth of treated groups in...
DISCUSSION

Under the experimental conditions used (continuous exposure of H460 and P388 cells), S 16020-2 was a potent cytotoxic compound as potent as ADR, while it was more potent in the P388/VCR-20 cell line, which has a pure classical MDR phenotype. These results suggest that S 16020-2 might retain a good activity on pure classical MDR lines because of its poor recognition by the P-glycoprotein which is super-expressed in the typical MDR lines (the activity against this line was also confirmed in vivo while ADR was totally inactive). The antitumor effect of S 16020-2 against the murine lung carcinoma LLC and the 2 NCI lung xenografts (H460 (NSCLC) and H69 (SCLC)) may suggest a relative selectivity towards lung carcinomas.

Preliminary results obtained by LE MEE et al. 1994 showed that S 16020-2 was able to intercalate into DNA and to interact with topoisomerase II. This result suggests that S 16020-2 shares the same mechanism of action with ADR and other topoisomerase II inhibitors. The observation of a high therapeutic effect of S 16020-2 on advanced murine tumors such as the highly metastatic Lewis lung carcinoma and the important tumor growth inhibition in human lung adenocarcinoma xenografts, may be explained by the formation of very highly stable DNA drug enzyme complex specific sequences of DNA. This explanation is just an hypothesis which need to be demonstrated before describing the real mechanism which induces this high antitumor effect. However, this attractive property of S 16020-2 may deserve further pharmacological and toxicological studies in preparation to an eventual phase I clinical investigation.

FIG. 7 : Antitumor activity of S 16020-2 against NCI-H460 (NSCLC) human tumor xenograft in nude mice.

Tumor fragments were transplanted SC when the tumors reached an average of 4-6 mm in diameter (day 0). The drugs were administered IV on days 0, 7 and 14. The curves represent the tumor growth of treated groups in comparison with the control group.
FIG. 8: Antitumor activity of S 16020-2 against NCI-H69 (SCLC) human tumor xenograft in nude mice.

Curves represent the tumor growth of treated groups in comparison with the control group.

BIBLIOGRAPHY

SR95325B: a new ellipticine derivative highly active against established murine solid tumors.

Invest. New Drugs 2 : 457

Feasibility of drug screening with panels of human tumor cell lines using microculture assay.
Cancer Res. 48 : 589

Multimodal action of antitumor agents on DNA: the ellipticine series.
Arch. of Biochem. Biophys. 258 : 261.

1-amino-substituted 4-methyl-5H-pyrido[4,3-b] indoles (γ-carbolines) as tricyclic analogues of ellipticine: a new class of antineoplastic agents.
J. Med. Chem. 31 : 398

JASZTOLD-HOWORKO R., LAUJ KRAUS-BERTHIER L., LEONCE S.
Synthesis and evaluation of 9-b-carbazole-1-N-{(diarylaminolalky} olivac derivatives.
J. Med. Chem. 37 : 2445

In vitro studies of S 16020-2, a new at 1st conference on DNA topoiso.

Effects of a new triazinaaminopiperid in cells displaying P-glycoprotein-mec.
Biochem. Pharmacol. 44 : 1707

NGUYEN C.H., BISAGNI E., PEPIN 1-amino-substituted 4-methyl-5H-pyr.
atoneoplastic agents.
J. Med. Chem. 30 : 1642

NGUYEN C.H., LAVELLE F., RIO (1992)
Further SAR in the new antit.
Anticancer Drug Design 2 : 235

Sister-chromatid exchanges, chromo.
topoisomerase II targeted drugs in s.

PEREZ V., PIERRE A., LEONCE S.,
Caractérisation in vitro de l'activité musidroge.
Bull. du Cancer 80 : 310

PIERRE A., KRAUS-BERTHIER L.,
Preclinical antitumor activity of a new.
Cancer Res. 51 : 2312

Synthesis and evaluation of 9-hydroxy-5-methyl-(and 5,6-dimethyl)-6H-pyrido[4,3-
olivacin derivatives
J. Med. Chem. 37 : 2445

LE MEE S., MARKOVITS J., PIERRE A., ATASSI G., BISAGNI E., JACQUEMIN-
In vitro studies of S 16020-2, a new antitumor activity pyridocarbazole derivative.
1st conference on DNA topoisomerases in therapy, New-York, 3-6/10/94

LEONCE S., PIERRE A., ANSTETT M., PEREZ V., GENTON A., BIZZARI J.P. and
ATASSI G. (1992)
Effects of a new triazinoaminopiperidine derivative on adriamycin accumulation and retention in cells displaying P-glycoprotein-mediated multidrug resistance
Biochem. Pharmacol. 44 : 1707

antineoplastic agents
J. Med. Chem. 30 : 1642

NGUYEN C.H., LAVELLE F., RIOU J.F., BISSERY M.C., HUEL C. and BISAGNI E.
(1992)
Further SAR in the new antitumor 1-amino substituted β-carbolines and 5H-
benzo[e]pyrido[4,3-b] indole series
Anticancer Drug Design 2 : 235

NOVIELLO E., ALUIGI M.G., CIMOLI G., ROVINI E., MAZZONI A., PARODI S., DE
SESSA F. and RUSSO P. (1994)
Sister-chromatid exchanges, chromosomal aberrations and cytotoxicity produced by
topoisoeraser II targeted drugs in sensitive (A2780) and resistant (A2780-DX3) human
ovarian cancer cells. Correlations with the formation of DNA double-strand breaks.
Mutation Res. 281 : 21

Caractérisation in vitro de l’activité du S 9788, un nouveau modulateur de la résistance
multidrogue
Bull. du Cancer 80 : 310

PIERRE A., KRAUS-BERTHIER L., ATASSI G., CROS S., POUPE M.F., LAVIELLE G.,
Preclinical antitumor activity of a new vinca alkaloid derivative, S 12363
Cancer Res. 51 : 2312
In vitro and in vivo circumvention of multidrug resistance by Servier9788, a novel triazinoaminopiperidine derivative
Invest. New Drugs 10 : 137

Correlations between intercalator-induced DNA strand breaks and sister chromatid exchanges, mutations and cytotoxicity in Chinese hamster cells.
Cancer Res. 45 : 3143.

Sister chromatides exchanges, chromosomal aberrations and cytotoxicity produced by antitumor topoisomerase II inhibitors in sensitive (DC3F) and resistant (DC3F/9-OHE) Chinese hamster cells.
Cancer Res. 48 : 512.

The G-C base pair preference of 2-N-methyl-9-hydroxy elliptinium.
Eur. J. Biochem. 181 : 129

THE PAST, PRESENT AND

E. GÜRKAN*

ABSTRACT
Knowledge about the past has been given and opinions presented in this work.

Key Words : Folk medicine, Ti...

The discovery and the doubt, is one of the most important made to health.
"SAVE PLANTS THAT SAVE"
slogan for protecting this treasury.

As we all very well know, traditional medicine, throughout the world, is a valuable belief, which is in common use. In other words, it is part of the culture that is passed from one generation to another. Cultural traditional medicine.

Some countries accept traditional medicine and see it as equal to, even better. Traditional medicine is not necessarily accepted in every country. The usage of all possible care. When we mention local remedies, we include traditional medicine and its usage is well handled by our systems. When doing this, specific natural remedies and any other remedies should be discarded.

* University of Marmara, Faculty of Medicine, Türkiye.
** University of Marmara, Faculty of Medicine, Istanbul, Türkiye.