SUPRAMOLECULAR SYSTEMS IN BIOPHARMACEUTICS AND PHARMACEUTICAL TECHNOLOGY

K. H. FRÖMMING

ABSTRACT
The formation of well defined supramolecular structures is quite common in pharmaceutical technology and biopharmaceutics. The aim of the formation of such structures between drug and additives is the improvement of drug properties such as drug release from the formulation, drug pharmacokinetics or drug stability. Molecular recognition, reactivity/catalysis and transport processes are basic aspects of supramolecular chemistry. All these three functions can be exerted by cyclodextrins as host molecules for the formation of pharmaceutically interesting supermolecules.

KEY WORDS
supramolecular systems, pharmaceutical technology, biopharmaceutics, cyclodextrin inclusion compounds

* Institute of Pharmacy, Pharmaceutical Technology, Free University of Berlin, Klischstr. 31, D-12169 Berlin, GERMANY.
INTRODUCTION

Supramolecular chemistry is chemistry beyond the molecule, the designed chemistry of the intermolecular bond. In contrast, molecular chemistry is the chemistry of the covalent bond.

Surprisingly, the word supramolecular chemistry is not as yet common in pharmacy although such processes as molecular recognition, supramolecular reactivity/catalysis and transport are basic aspects of supramolecular chemistry.

Supramolecular chemistry can be subdivided into
- the formation of stoichiometric supermolecules
- the formation of molecular aggregates.

Figure 1 shows the relation between molecular and supramolecular chemistry /1/. A drug molecule is normally synthesized by formation of covalent bonds. This is molecular chemistry. This drug molecule can combine with other molecules by noncovalent bonds, e.g., with a receptor or an excipient molecule, to a supermolecule. A prerequisite for such a combination is the molecular recognition. Catalytic reactions or transformations are additional reactions which can possibly be exerted by the supermolecule.

Sometimes, two or more supramolecular units can be transformed to higher functional units with well defined microscopic polymolecular structures such as thin layers, membranes, vesicles or liquid crystals.
Beyond the molecule, molecular bond. In a chemistry of the supramolecular processes as reactivity/catalysis.

Supramolecular structures are divided into supramolecules. Each molecular and g molecule is normally t bonds. This is a prerequisite for molecular recognition. Catalytic reactions are additional reactions of a supermolecule.

Fig. 1: Relation between molecular and supramolecular chemistry.

SUPRAMOLECULAR STRUCTURES IN PHARMACEUTICAL TECHNOLOGY AND BIOPHARMACEUTICS - AN OVERVIEW

The formation of supramolecular structures is quite common in pharmaceutical technology and biopharmaceutics. The aim of the formation of a supramolecular unit by interactions between drug and additives is the improvement of drug properties concerning drug release from the formulation, drug pharmacokinetics or drug stability. The self-aggregation of a poorly water-soluble drug and a suitable additive can form a better soluble supermolecular unit which can result in a faster therapeutic effect. Complexation between an easily soluble drug and an additive with a limited solubility in water results in a supermolecule with sustained release effects. The formation of a supermolecule between a chemically unstable drug and a suitable additive serves to improve drug stability. Higher organized supramolecular structures such as liposomes or niosomes can be involved.
into the transport of drugs to a targeted organ.

Different types of supramolecules or supramolecular aggregates can be formed by noncovalent binding, in most cases by self-organization.

Molecular complexes

Caffeine is known to form soluble complexes with different compounds, like sodium salicylate, sodium benzoate or benzocaine /2/. Supramolecules of iodine with certain types of surfactants or water soluble polymers, so called iodophores, have been developed in order to overcome the disadvantages of iodine as a topical disinfectant /3/.

Inclusion compounds

Among the well known host molecules for inclusion formation - urea, thiourea, deoxycholic acid, cyclodextrins only the latter one obtained a greater pharmaceutical significance. The physical chemical and biopharmaceutical properties of the included drug are influenced very much by the property of the surrounding host molecule /4/.

Micellar structures

Quite different supramolecular structures can be formed by micellization of surfactants /5, 6/. The characteristic orientation of small amounts of amphiphilic molecules occurs at the air-water interface. Beyond the critical micelle concentration the formation of small spherical or cylindrical aggregates or solution begins. These surfactants can solubilize or as a trans; increase of the surfactant supramolecular aggregates lacking to fill the space: micelles. Higher ordered are formed. Such liquid-c systems are involved in some semisolid formulations, microemulsions, ointment emulsions.

Vesicles, liposomes

To date many efforts ha delivering drugs to specific is combined with site-spe carriers to supramolecular self-organization. Examples carriers are stabilized m nanoparticles, polymer co

Ion-pair transport

Another supramolecular Highly ionized compounds chemically neutral, more permeate membranes /8/.
cylindrical aggregates or micelles in the bulk of the solution begins. These supramolecular units can be used as solubilizer or as a transport form for drugs. Further increase of the surfactant concentration results in supramolecular aggregates where water molecules are lacking to fill the spaces between the still isolated micelles. Higher ordered hexagonal or lamellar structures are formed. Such liquid-crystalline or semiliquid-crystalline systems are involved in the fundamental structure of some semisolid formulations used in pharmacy such as microemulsions, ointment vehicles or the interface of emulsions.

Vesicles, liposomes

To date many efforts have been directed towards delivering drugs to specific sites within the body. The drug is combined with site-specific soluble or particulate carriers to supramolecular units which are mainly formed by self-organization. Examples of such colloidal particulate carriers are stabilized micellar systems, lipid vesicles, nanoparticles, polymer complexes etc. /7/.

Ion-pair transport

Another supramolecular transport system is ion-pairs. Highly ionized compounds or opposite charges form electro-chemically neutral, more lipophilic complexes which can permeate membranes /8/.
Incompatibilities

But the formation of supermolecules or supramolecular units can lead to undesirable visible or hidden incompatibilities which can decrease the chemical or physical stability of the product. Drug-drug or drug-additive interactions can influence absorption, distribution, metabolism or excretion.

CYCLODEXTRIN INCLUSION COMPOUNDS: A CLASS OF TYPICAL SUPERMOLECULES

Properties of cyclodextrins

The possibility to obtain supermolecules with different properties by minor changes of the basic structure of native cyclodextrin (CD) are of great interest for supramolecular chemistry /9/. CDs can exert the three fundamental functions of supermolecules, molecular recognition, catalytic effects and transportation. It can be distinguished between the native α-, β- and γ-CD with different diameters in the cavity and a limited solubility, and the easily water soluble alkylated or hydroxyalkylated CDs /10/ (Figure 2).

An important property of CDs is their ability to include guest molecules in the hydrophobic cavity. A single host molecule surrounds a single guest molecule. The guest molecule can be surrounded either completely or partially by the host molecule.

In solution, there exists a molar ratio of 1:1. The cavity for the formation is strated e.g. for the inclusion of β-CD, respect a small cavity size preferred side chain of prostagl ancomodates the five-membered the larger γ-CD cavity in such a way that the whole cavity.

\[\text{Fig. 3: Assumed structure of complexes.} \]
In solution, there exist primarily supermolecules in the molar ratio of 1:1. The importance of the size of the cavity for the formation of supermolecules can be demonstrated e.g. for the inclusion of prostaglandin E2 with \(\alpha \)-, \(\beta \)- and \(\gamma \)-CD, respectively /11/ (Figure 3). \(\alpha \)-CD having a small cavity size preferably includes the aliphatic \(\omega \)-side chain of prostaglandin molecule while \(\beta \)-CD accommodates the five-membered ring. On the other hand, the larger \(\gamma \)-CD cavity interacts with the prostaglandin in such a way that the whole of the guest penetrates the cavity.

![Fig. 3: Assumed structures of prostaglandin E2/cyclodextrin complexes.](image-url)
When the molecular size of the guest is too bulky to be included in one CD cavity more than one CD molecule are available for inclusion. This is frequently the building structure in solid inclusion compounds. Some of the molecular structures are stacked on top of each other within the crystal, like coins in a roll, so that a channel-type structure is formed.

Very important for the different effects of the CD supermolecules are the solubilities of CDs and their derivatives. The limited solubilities of α-CD (14.5 g), β-CD (1.85 g) and γ-CD (23.2 g 100 ml$^{-1}$, room temperature) are sufficient to solubilize many poorly soluble drugs for a transport along the gastrointestinal tract, but insufficient for an intravenous transport. For many highly hydrophobic drugs to be transported the partly methylated, easily soluble (2,6-di-O-methyl)-β-CD (DIMEB) proved to be the most effective solubilizer, remaining unexceeded until today. Regrettably this derivative is highly surface active and has a high affinity for cholesterol. In contrast, 2-hydroxypropyl-β-CD (2-HPBCD) is absolutely nontoxic and has an acceptable solubilizing effect for poorly soluble drugs so that these can be transported within the blood. When ethyl groups are introduced into the hydroxyls of β-CD, the CD solubility decreases with increasing degree of substitution.

The chirality of the CD molecule is important for the recognition of other molecules.
Supramolecular reactivity and catalysis

The channel structure of most solid inclusion compounds favors the stabilization of an included unstable drug [10]. This must be not the case with inclusion compounds dissolved in water. In solution, CDs can decelerate or accelerate oxidation, hydrolysis, decarboxylation, nitrosation isomerization etc. of included drugs. The reaction depends on the CD used and the kind and stability of the inclusion compound formed. CD-catalyzed reactions can be classified in the following two categories [10].

- Covalent catalysis, in which CDs catalyze reactions between the catalytic sites of the CDs and the reactive sites of the guest molecule (Figure 4). The first step for an ester cleavage by CDs is complex formation between CD and substrate. The second step is the nucleophilic attack by one of the hydroxyl groups of the CDs on the substrate, resulting in a covalent intermediate. This intermediate then hydrolyses to the final product.

- Noncovalent catalysis, in which CDs provide their cavities as apolar or sterically restricted reaction fields without the formation of any covalent intermediates. Different CDs can exert different catalytic effects against the same drug. β-, γ-CD and DIMEB significantly catalyze the in vitro nitrosation of the slowly nitrosatable ephedrine; α-CD has no influence (Figure 5). Minor structural changes of a guest molecule can have opposite effects on the activity of the same CD. The alkaline hydrolysis of
p-aminobenzoic acid esters is decelerated both by \(\alpha \)- and \(\beta \)-CD, because the guest can be fully accommodated into both CDs [10]. However, in the case of o- and m-isomers

![Chemical structures](image)

Fig. 4: Cyclodextrin catalyzed reaction: acetyl transfer by covalent catalysis.

![Graph](image)

Fig. 5: In vitro nitrosation of ephedrine in presence of cyclodextrins.

pH 3.2

K. H. FRÖMMING

... of the guest, only \(\beta \)-CD accelerates the reaction. Since the reaction site is at the 7-position near to the CD-rim hydroxyl groups which behave as an enzyme while, when the guest is not accommodated into the CD-skeleton, it behaves as a stabilizer.

Molecular recognition

CDs detect not only the stereochemistry of guests but also distinguish between their chirality. The more significant is the sorting of the isomers of guest molecules into different compartments of the CD-skeleton, the more significant is the effect of the CD.

The administration of \(\alpha \)-CD to patients with coronary artery disease is expected to increase the availability of coronary arteries and improve the delivery of lipids and other substances to the lesion. The increase in plasma cholesterol levels in patients with coronary artery disease given \(\alpha \)-CD may improve the overall outcome of cardiovascular disease.

In a potentially life-saving approach, the administration of \(\alpha \)-CD to a child suffering from familial hypercholesterolemia was effective in improving the cholesterol level and did not cause any adverse effects. The total injected dose of CD was well tolerated by the patient.
of the guest, only 8-CD shows stabilizing effects, while the \(\alpha \)-CD accelerates the hydrolysis. The o- and m-substituents cannot enter into the narrow \(\alpha \)-CD cavity, the partial penetration of the phenyl moiety brings them sterically near to the CD-rim hydroxyls. In this case the CD behaves as an enzyme while, when the penetration is deeper, it behaves as a stabilizer. This is also one principle of molecular recognition which can be performed by CDs.

Molecular recognition

CDs detect not only the length and thickness of a guest but also distinguish between enantiomeric guest molecules owing to their chirality. Therefore, CDs receive more and more significance in analytical chemistry.

The administration of ‘empty’ CD molecules to the blood provides the opportunity for the formation of a complex with constituents of the blood serum. Intravenous administration of 2-HP8CD to rats leads to a transient decrease in plasma cholesterol levels. The complex can be transported rapidly from the intravascular to the extravascular compartment. The increased transport rate explains the decrease in plasma cholesterol levels after CD injection /13/.

In a potentially life saving indication, 2-HP8CD was employed to accelerate the elimination of vitamin A in a child suffering from familial vitaminosis A. The treatment was effective in improving the normal elimination of the vitamin and did not cause noticeable toxicity even at a total injected dose of 30 g /14/. This principle of
molecular recognition is paired with the transportation of the recognized substance by the CD as a carrier.

Transportation

The transport of guest molecules can be performed by means of mobile CDs. Only the formation of a soluble supermolecule between an easily soluble CD derivative and a poorly soluble drug enables the administration of some drugs to patients. Table 1 compares the solubility enhancement of a number of drugs afforded by β-CD and 2-HPβCD /11/. Especially extreme is the solubility enhancement of the steroid anaesthetic alfaxalone in water (solubility in water 3.6 µg·ml⁻¹) by 20% solutions of β-CD (944 times), DIMEB (7500 times) and 2-HPβCD (8056 times) /10/.

In conclusion, the properties of a drug molecule as a constituent of a supermolecule or a supramolecular system can be changed fundamentally. This survey can only give a limited insight into some important systems related to pharmaceutical technology and biopharmaceutics. Supramolecular systems play also an important role beyond the formulation of the drug and beyond the drug release in the body. Supramolecular chemistry is a fundamental part of biochemical recognition and transportation of substances across membranes and of distribution. The drug-protein complex is a supramolecular unit. Metabolism is a result of the catalytic effects produced by the enzyme-substrate

Solubility enhancement of drugs in water by 8-CD and 2-hydroxypropyl-8-CD

<table>
<thead>
<tr>
<th>Drug</th>
<th>Water solubility (mg ml(^{-1}))</th>
<th>Enhancement factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8-CD</td>
</tr>
<tr>
<td>Diazepam</td>
<td>55.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Digitoxin</td>
<td>15.5</td>
<td>27</td>
</tr>
<tr>
<td>Digoxin</td>
<td>66.5</td>
<td>90</td>
</tr>
<tr>
<td>Flurbiprofen</td>
<td>44.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>22.9</td>
<td>2.5</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>28.0</td>
<td>10</td>
</tr>
<tr>
<td>Prednisolone</td>
<td>145.0</td>
<td>14</td>
</tr>
<tr>
<td>Progesterone</td>
<td>13.2</td>
<td>3.1</td>
</tr>
<tr>
<td>Testosterone</td>
<td>31.4</td>
<td>2.7</td>
</tr>
</tbody>
</table>

8-CD: saturated solution
2-HP8CD: 20 per cent solution

...supermolecule. A better understanding of the principles of these processes will also be helpful for the further drug development.

REFERENCES

