CURRENT RESEARCH TOPICS IN PHARMACY:

Drug Delivery

February 28th, 2023 12.00 PM ISTANBUL

FOR REGISTRATION:

First Session - Moderator: Gülşah GEDİK 12.00-13.30 PM

- Welcome - Prof. Oya Kerimoğlu
 Marmara University, Istanbul, Türkiye

- Core-shell type lipol-polymer hybrid nanocarriers as novel-generation drug delivery platform – Assoc. Prof. Ceyda Tuğba Şengel Türk
 Ankara University, Ankara, Türkiye

- Drug delivery systems used for biological products - Assist. Prof. Ongun Mehmet Saka
 Ankara University, Ankara, Türkiye

- Viral delivery systems within the gene therapy landscape - Dr. Ceyda Ekentok Atıcı
 Marmara University, Istanbul, Türkiye

Second Session – Moderator: Ongun Mehmet SAKA 14:00-15.30 PM

- Nanobiomaterials for drug delivery - Assist. Prof. Gülşah Gedik
 Trakya University, Edirne, Türkiye

- Microeddles: A smart approach for intradermal and transdermal drug delivery systems - Assist. Prof. Ebru Altuntaş
 Istanbul University, Istanbul, Türkiye

- Nose-to-brain drug delivery of nanoformulations: Preparation and in vitro evaluation – Dr. Özge Gün Eşim
 Ankara University, Ankara, Türkiye

Chair
Prof. Halice Kübra ELÇİOĞLU

Vice Chairs
Prof. Levent KABASAKAL & Assoc. Prof. Esra TATAR

ORGANIZING & SCIENTIFIC COMMITTEE
Editorial Board of Journal of Research in Pharmacy
https://www.jrespharm.com/
CURRENT RESEARCH TOPICS IN PHARMACY:

Drug Delivery

February 28th, 2023 12.00 PM ISTANBUL

FOR REGISTRATION:

Third Session- Moderator: Ceyda EKENTOK ATICI 16.00-18.30 PM

- Microemulsion utility in pharmaceutilcs: An overview and pharmaceutical applications- Assist.Prof. Emre Şefik Çağlar
 University of Health Sciences, Istanbul, Türkiye

- Journey of the saponin from the plant to the formulation for the blocking tumor activities – Dr.Burcu Üner
 The University of Health Science and Pharmacy in St. Louis, MO, USA

- Development of injectable ROS responsive nanoparticles with identified protein fpr improvement of the cardiac repiar following myocardial infarction- Dr. Renuka Khatnik
 Washington University in St.Louis, MO, USA

- Groundbreaking delivery systems: Liposomes-microbubbles complexes - Dr. Pankaj Dwivedi
 University of Health Sciences and Pharmacy in St. Louis, MO, USA

- Breaking the barriers with cutting edge intradermal delivery towards pain-free skin therapy: Dissolvable microneedle devices for localized therapy – Dr.Monica Dwivedi
 Birla Institute of Technology, Meera, India

Chair
Prof. Hatice Kûbra ELÇIOĞLU

Vice Chairs
Prof. Levent KABASAKAL & Assoc. Prof. Esra TATAR

ORGANIZING & SCIENTIFIC COMMITTEE
Editorial Board of Journal of Research in Pharmacy
https://www.jrespharm.com/
Liposome-microbubble (LMBs) complexes are a type of drug transport system that is being advanced for most cancers therapy. LMBs is a singular technique inside the area of targeted chemotherapy that combines the benefits of liposomes and microbubbles.

Where liposomes are small, spherical structures with lipid bilayer which can encapsulate drugs, microbubbles are gas-stuffed lipidic system which are clinically used for ultrasound imaging. While those two systems are mixed, the resulting LMBs can target and supply therapeutics without delay to cancer cells. This method has the capability to improve the efficacy of cancer healing procedures and decrease facet effects through focusing the transport of the drugs to the most cancerous cells. Moreover, using ultrasound imaging to guide the delivery of the complexes can help enhance the accuracy and specificity of the treatment.

LMBs are created with the aid of encapsulating therapeutics within liposomes and then coating these liposomes as a layer to microbubbles. This aggregate results in a hybrid drug delivery system that lets in for focused and controlled launch of the therapeutic sellers on the site of disease.

The microbubbles serve as a comparison agent, allowing visualization of the LMBs for the duration of ultrasound imaging, which lets in real-time tracking of their movement and distribution within the body. This permits for precise focus on the therapeutic sellers to the diseased tissue, reducing the facet effects associated with traditional chemotherapy and increasing the healing efficacy of the treatment.

LMB technology has proven promising effects in preclinical research and is currently being examined in scientific trials for the treatment of various forms of cancer, which
include solid tumors and hematologic malignancies. In addition, this generation also can be used to supply healing dealers to different diseases, along with cardiovascular and inflammatory problems.

In conclusion, the liposome-microbubble era is a promising approach within the discipline of focused chemotherapy, presenting the potential for improved efficacy and decreased side results compared to traditional chemotherapy techniques.

Keywords: Liposome-microbubble complexes, drug transport systems, targeted chemotherapy.
REFERENCES

