Imatinib Synergizes with 2, 5- Dimethylcelecoxib, a Close Derivative of Celecoxib, in HT-29 Colorectal Cancer Cells: Involvement of Vascular Endothelial Growth Factor

Saba NIKANFAR 1*, Somayeh ATARI-HAJIPIRLOO 2*, Fatemeh KHERADMAND 3*, Amir HEYDARI 4*

1 Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
2 Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
3 Department of Biochemistry, Faculty of Medicine, Solid Tumor and Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
4 Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
* Corresponding Author. E-mail: kheradmand@yahoo.com (F.KH.); Tel. +98-914-341 66 60.

Received: 05 July 2022 / Revised: 29 August 2022 / Accepted: 30 August 2022

ABSTRACT: Combining agents with molecular targets can reduce monotherapy’s required dose and toxicity in cancer treatment. In this study, we investigated the cellular viability and the mRNA expression of vascular endothelial growth factor (VEGF) and nuclear factor kappa B (NF-kB) for the synergistic effects of imatinib and 2, 5- dimethylcelecoxib (DMC) combination in human colorectal cancer cells. The effects of imatinib and DMC on cell viability were assessed by MTT assay in HT-29 cells. The dose-effect relationships and drug interaction analyses were performed using the CompuSyn Software. NF-kB and VEGF mRNA expression after treating cells with imatinib (7 μM) and DMC (24 μM) separately and in combination (3.5 μM imatinib plus 12 μM DMC) were investigated using real-time RT-PCR. A strong synergy was observed in most of the combined dose pairs of imatinib- DMC in the growth inhibition of HT-29 cancer cells. Combined treatment with 3.5 μM imatinib and 12 μM DMC resulted in a significant (p < 0.05) decrease in VEGF and NF-kB mRNA levels as compared to the vehicle-treated control group. In addition, VEGF mRNA reduction was significant at the mentioned concentrations for the imatinib-DMC combination compared to imatinib alone (p < 0.05). Our results suggest VEGF as one of the cyclooxygenase2 (COX-2) independent mechanisms for the synergistic effects of imatinib-DMC. It would be beneficial to further evaluate the potential utilization of DMC for the anti-cancer application while minimizing undesired side effects related to COX-2 inhibition and reducing the side effects of imatinib therapy.

KEYWORDS: Colorectal cancer; Cyclooxygenase 2; 2,5-dimethylcelecoxib; NF-kappa B.

1. INTRODUCTION

Colorectal cancer is the third most common neoplastic disease worldwide. According to the World Health Organization, about one million people are diagnosed with this cancer annually. Colorectal cancer is characterized by a positive expression of c-kit, a type of receptor tyrosine kinase [1], and is responsive to a specific tyrosine kinase inhibitor, imatinib. Imatinib, a chemotherapeutic agent, is the first-choice drug in patients with gastrointestinal stromal tumors [2-6]. However, in most cases, imatinib elicits a partial response, and finally, drug resistance occurs. Besides, chemotherapeutic drugs in colorectal cancer treatment have adverse side effects that limit their usage, so research for alternative drug treatment and examination of lower doses of these drugs in combination with others such as anti-inflammatory drugs can be beneficial [3,6,7].

Due to the anti-carcinogenic effects of non-steroidal anti-inflammatory drugs (NSAIDs) on colorectal cancer, these drugs have recently attracted extensive research [8,9].

2,5- dimethylcelecoxib (DMC) is a celecoxib analogue, which mimics all of the numerous anti-tumor effects of celecoxib in vitro and in vivo [10,11]. Besides, DMC might not lead to the cardiovascular side effects of long-term use of cyclooxygenase2 (COX-2) inhibitors that are thought to be due to the inhibition of COX-2 and subsequent imbalance of eicosanoid levels [12].

http://dx.doi.org/10.29228/jrp.374
As DMC does not have COX-2 inhibitory properties, the precise mechanisms for its chemopreventive effects are not yet known. Among multiple pathways reported, nuclear factor kappa B (NF-κB) has been shown to regulate the expression of sets of genes encoding products involved in tumorigenesis [13]. The activity of NF-κB in colon cancer cell lines is abnormally high [14]. Therefore, inhibition of the NF-κB signaling pathway may improve the response of colon cancer cells to chemotherapy. In addition, the vascular endothelial growth factor (VEGF) is an important angiogenic factor that is most strongly associated with tumor growth and metastasis [15].

Our primary aim in the present study was to examine the anti-proliferative effects of the imatinib-DMC combination on the colorectal cancer HT-29 cell line and define the interaction between these drugs. In addition, we conducted experiments to determine whether imatinib in combination with DMC could affect the mRNA expression of NF-κB and VEGF in HT-29 colorectal cancer cells.

2. RESULTS

2.1. Interactions between imatinib and DMC

Following the half-maximal inhibitory concentration (IC$_{50}$) results we obtained from our previous work [16], this study is reporting new findings for the combination of imatinib and DMC at their IC$_{50}$ ratio (1:3.5). In the combined treatments, the concentrations of imatinib were 2.5, 3.5, 5, and 6.5 µM, while the concentrations of DMC were 8.75, 12, 17.5, and 22.75 µM, which were 3.5-fold higher than those of imatinib. The MTT assay results were analyzed by the isobologram method as described earlier. The combination of imatinib-DMC exhibited antagonistic interaction only at DMC doses of 8.75 µM and additive interaction at doses of 22.75 µM (Figure 1). However, all other combinations showed synergism in the ratios tested. Concentrations of 17 and 22 µM for DMC and 3.5 µM for imatinib were used to examine the drug interaction in some non-constant ratios. Most of the combined dose pairs at the ratios tested presented some degree of synergistic interactions.

![Figure 1](http://dx.doi.org/10.29228/jrp.374)

Figure 1. Growth inhibitory effects of imatinib and 2, 5- dimethylcelecoxib (DMC) at different concentrations. a) HT-29 cells were treated with different concentrations of imatinib (2.5, 3.5, 5, 6.5 µM) and DMC (8.75, 12, 17, 17.5, 22, 22.75 µM) for 24 h and analyzed by MTT assay. Columns, mean of triplicate experiments; error bars, SD. Results were analyzed by one-way ANOVA, and * represents $p < 0.05$ and *** $p < 0.0001$ versus DMSO as vehicle control. b) Combination index (CI) plot for imatinib/DMC combinations at constant (diamond) and non-constant (triangle) ratios. The antagonistic effect of DMC (8.75 µM) and imatinib (2.5 µM) was not shown. CI plot was constructed using Chou and Talalay's method. Synergy was defined as CI lower than 1.0. The fraction affected (Fa) was calculated as $[1 - (MTT signal for the experimental sample)/(MTT signal for the untreated control)]$.
2.2. The effect of imatinib and DMC combination on growth inhibition of HT-29 cells in vitro

Based on the preliminary results of this study, a combination of 3.5 µM imatinib and 12 µM DMC was the lowest and most effective dose used for complementary experiments. Treatment with imatinib (3.5 µM) + DMC (12 µM) for 24 h caused no significant growth inhibition when compared with either drug alone (7 µM imatinib and 24 µM DMC) (Figure 2), but reduced cell growth to 38% versus control \((p < 0.05)\). The combination index (CI) value for imatinib (3.5 µM) - DMC (12 µM) combination was 0.370.

![Figure 2](image-url)
Figure 2. Anti-proliferative effects of imatinib and 2, 5-dimethyleclocib (DMC) treatment alone and in combination on HT-29 cells. The viable cell number was determined using the MTT colorimetric assay. The means of cell viability were compared by one-way ANOVA. * \(p < 0.05\) as compared to the vehicle-treated control group.

2.3. Effects of imatinib and DMC treatment alone or in combination on VEGF mRNA expression

According to real-time reverse transcription polymerase chain reaction (RT-PCR) results, treatment with imatinib and DMC alone (at their IC\(_{50}\) levels) showed no significant effect on VEGF mRNA levels compared to the vehicle-treated control group in HT-29 cells. However, the combined treatment with 3.5 µM imatinib and 12 µM DMC resulted in a significant decrease in VEGF mRNA level compared to the vehicle-treated control group \((p = 0.002)\) and imatinib alone \((p = 0.003)\) (Figure 3).

![Figure 3](image-url)
Figure 3. Effects of imatinib and 2, 5-dimethyleclocib (DMC) alone or in combination on VEGF mRNA levels with \(\beta\)-actin as the internal control by real-time RT-PCR analysis. The means of mRNA expression for three independent experiments in each treatment group were compared by one-way ANOVA.

\#, \(p < 0.05\) versus imatinib alone; *, \(p < 0.05\) versus vehicle-control
2.4. Effects of imatinib and DMC treatment alone or in combination on NF-κB mRNA expression

In addition, qRT-PCR results showed that similar treatments with DMC but not imatinib (in their IC_{50}) had a significant (p= 0.037) effect on NF-κB mRNA expression compared to the vehicle-treated control group in HT-29 cells. However, NF-κB mRNA levels significantly (p= 0.001) decreased after combined treatment with 3.5 µM imatinib and 12 µM DMC compared to the vehicle-treated control group (Figure 4).

![Figure 4. Effects of imatinib and 2, 5- dimethylcelecoxib (DMC) alone or in combination on NF-κB mRNA levels by real-time RT-PCR analysis. NF-κB mRNA expression was normalized to β-actin in each sample. The means of mRNA expression for three independent experiments in each treatment group were compared by one-way ANOVA. * p < 0.05 versus untreated vehicle-control](image)

3. DISCUSSION

Our results demonstrated that the treatment with imatinib-DMC combination for 24 h reduced cell growth significantly versus control. A strong synergy was also observed in most of the combined dose pairs of imatinib and DMC in the growth inhibition of HT-29 human colorectal cancer cells. In addition, we demonstrated that the synergistic anti-proliferative effects of imatinib-DMC were associated with a decrease in VEGF mRNA levels. Also, a reduction in NF-κB mRNA expression might be a possible mechanism for the anti-proliferative effects of this combination.

Colorectal cancer is responsive to specific tyrosine kinase inhibitor imatinib. Although imatinib is not the primary therapy of choice in this cancer, it has recently been studied successfully in phase I/II clinical trials combined with some other drugs in advanced/ metastatic colorectal cancer [17, 18]. Also, particular promising effects have been found for imatinib alone or in combination with other agents in colorectal cancer [4, 19]. Since drug resistance and side effects related to imatinib treatment may significantly limit its effectiveness, using suitable combinations of imatinib and other preventive agents can be advantageous in lowering the required dose of anti-cancer drug and minimizing undesirable side effects [20,21]. Kim et al. showed that deferasirox and imatinib combination synergistically inhibited proliferation of both imatinib-resistant and -resistance chronic myeloid leukemia cell lines.

Due to the anti-carcinogenic effects of NSAIDs, it has been reported that using these drugs along with various chemotherapeutic agents can enhance the efficacy of chemotherapy [22, 23]. Previous studies [24,25] have shown anti-proliferative effects of COX-2-selective NSAID, celecoxib, against colorectal cancer. It has been recently shown that imatinib-celecoxib combination decreases cell viability and COX-2 expression in HT-29 cells [26]. This combination also synergistically inhibited the proliferation of K562 cells [27]. Dharmapuri et al. [21] reported that imatinib-resistant K562 cells are more sensitive to imatinib following treatment with celecoxib. In addition, celecoxib contributed to the down-regulation of genes involved in imatinib resistance [28].

However, it seems that the cardiovascular side effects related to COX-2 inhibition may limit celecoxib application. The absence of COX-2 inhibitory activity in DMC, a close structural celecoxib analog, might appear to be advantageous for studying COX-2 independent anti-tumor mechanisms of DMC [11].
VEGF has a fundamental role in the angiogenic process. In this study, treatment with sub-effective concentrations of imatinib and DMC significantly decreased VEGF mRNA levels. Therefore, the synergistic effect of this combination seems to be partly mediated by VEGF, and it can be one of the COX-2 independent targets of DMC. Schultz et al. [29] reported that imatinib and carboptatin synergistically suppressed VEGF, platelet-derived growth factor (PDGF), and PDGF-Rα/β expression in head and neck squamous cell carcinoma [30]. However, in our study, VEGF decrease was not observed when cells were treated with the higher concentrations of either agent alone. Like our results, the VEGF level was not affected in glioma cells treated with DMC.

Consistent with Posadas et al. [31] and recent work by Atari et al. [26], imatinib exposure (7µM) lead to an insignificant increase in VEGF mRNA levels. Atari et al. demonstrated that imatinib-celecoxib combination do not increase VEGF expression [26]. In addition, celecoxib has been shown to increase VEGF expression, which seems to be involved in drug resistance [32]. Therefore, imatinib-DMC appears to be more effective than imatinib-celecoxib combination, especially in the case of VEGF inhibition. However, the safety of this combination should be evaluated in future studies.

In consistence with our findings about the effects of treatment with imatinib-DMC on NF-κB levels, it has been reported that deferasirox and imatinib combination arrested cell cycle and induced apoptosis through down-regulating the expression of NF-κB and β-catenin levels and suggested this combination as an alternative option for treatment of imatinib-resistant CML [33].

Surprisingly, imatinib-celecoxib combination did not significantly decrease NF-κB mRNA levels [26]. However, according to literature, DMC alone has also been shown to down-regulate NF-κB in multiple myeloma cells [34] and decrease the transcriptional activity of NF-κB in human cervical cancer cells [35]. In our study, NF-κB mRNA expression significantly decreased after treatment with imatinib-DMC compared to the control group. Thus NF-κB might be considered a COX-2 independent mechanism for anti-proliferative effects of imatinib-DMC combination. However, the other molecular pathways should also be considered and evaluated in future studies.

The limitations of this work include 1) small sample size, 2) using only one cell line, and 3) not measuring the effects of gene expression in other dose pairs. To the best of our knowledge, there is no available work reporting the combinational effect of imatinib and DMC on cell viability. However, decreased cell viability and increased apoptosis have been reported after treatment with imatinib and celecoxib [26, 28] and OSU-03012, a celecoxib-derived phosphoinositide-dependent kinase-1 (PDK-1) inhibitor [36].

4. CONCLUSION

In conclusion, the present in vitro study with colon cancer cell lines demonstrated that imatinib-DMC combination significantly decreased cell viability compared to the control group. In this regard, our study presents VEGF as an important COX-2-independent molecular target involved in mediating the synergistic anti-proliferative effects of imatinib-DMC combination. NF-κB might be considered another COX-2 independent mechanism for the anti-proliferative effects of this combination, and its role should be more extensively investigated in future studies. Therefore, these findings provide further insights into the possible use of DMC alone or in combination with other drugs without the undesired cardiovascular risks related to COX-2 inhibition. However, DMC’s clinical usefulness and safety should be considered in future research.

5. MATERIALS AND METHODS

5.1. Reagents and chemicals

Human colorectal cancer cell line HT-29 was obtained from the Iranian Biological Resource Center (IBRC, Tehran, Iran). DMC was ordered from Sigma-Aldrich (St. Louis, MO, USA). Imatinib mesylate, available under the trade name Glivec® or Gleevec, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) kit were purchased from Cayman Chemical Co. (Ann Arbor, MI, USA).

5.2. Cell culture and drug treatment

HT-29 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with stable glutamine (PAA), supplemented with 10% fetal bovine serum (PAA) and 100 units/mL of penicillin at 37°C with 5% CO₂. All drugs were dissolved in dimethyl sulfoxide (DMSO), which was used as the vehicle to deliver drugs. The final concentrations of DMSO in vehicle-control wells were equal to that of the test wells and did not exceed 0.1% throughout the study [37]. Before use, the stock solutions of drugs (20 mM) were prepared and diluted in DMEM. The drug concentrations used are listed in the table.
5.3. Cell viability

Cell proliferation was analyzed by the MTT method in triplicate. Briefly, HT-29 cells (5,000 cells/well) were seeded in 96-well plates. At 24 h after seeding, the cells were treated with distinct concentrations of imatinib and DMC or their combination at a ratio of 1:3.5. One day after treatment, 10 µl of MTT reagent was added per well and the plates were incubated at 37°C for another 3 h. The reaction was stopped by the removal of MTT-containing media. After that, 100 µl of Crystal Dissolving Solution was added to solubilize formazan crystals. Absorbance at 570 nm was recorded using a microplate reader (Stat Fax 2100, Awareness Technology Inc.). Experiments were repeated at least three times in triplicate. The cell viability was calculated as the absorbance ratio of treated samples to the untreated vehicle control.

5.4. Analyses of drug effects and interactions

Analyses of the dose-effect relationship and drug interaction for imatinib in combination with DMC were performed according to the median-effect method of Chou and Talalay [38]. Using the CompuSyn Software. The combined effect of imatinib and DMC was analyzed using the same method by calculating the CI. CI <1 indicates synergism, CI =1 indicates additive effect, and CI > 1 indicates antagonism [39].

5.5. RNA extraction and cDNA synthesis

Total RNA of about 5×10⁶ HT-29 treated cells was extracted using the Total RNX-Plus Solution Kit (CinnaGen Co., Iran) according to the manufacturer’s protocol. The purity of the extracted RNA was confirmed by measuring the ratio of optical density at 260 nm to that at 280 nm, and the integrity was examined by electrophoresis on the agarose gel. Complementary DNA (cDNA) synthesis was performed using 2 µg of total RNA by 2-step RT-PCR Kit (Vivantis, Malaysia) according to the manufacturer’s instructions. The synthesized cDNA was directly used as a template for quantitative RT-PCR using Bio-Rad iQ5 cycler Sequence detection system (Bio-Rad Laboratories Inc.).

5.6. Real-time RT-PCR

Primers were designed for real-time RT-PCR and their sequences for NF-κB were 5'-GGAGATCGGGAAAGAGGC-3' (sense) and 5'-GACTCCACCATTTTCTTCTC-3' (anti- sense). The primers for VEGF were 5'-AGGAGGGGCAAGAATC-3' (sense) and 5'-GCACATCGGCTTGAA-3' (anti-sense). The β-actin gene was used as the reference gene for normalization by the following primers: forward, 5'-CTGGAACGGTGAGGTTGACA-3' and reverse, 5'-TGGGATGGCTTATAGGATG-3'. Real-time RT-PCR was performed by using the AccuPower® 2X Greenstar qPCR master mix (Bioneer, South Korea) in a total volume of 25 µl according to the manufacturer’s instructions. The reactions were prepared in a 96-well optical plate for 10 min at 95°C, followed by 40 cycles of 20 sec at 95°C and 45 sec at 59°C. In addition, a no-template control was used to test the potential contamination and primer dimer formation. The relative expression of each mRNA was calculated using the 2-ΔΔCt method, where Ct is the threshold cycle [40], and relative expression levels of mRNA were normalized to β-actin.

5.7. Statistical analysis

Parametric tests were used because distributions of values were normal. The results are presented as mean ± standard deviation (SD) of triplicate experiments repeated at least three times. Statistical significance of differences between mean values was analyzed by one-way analysis of variance (ANOVA) followed by Tukey’s honestly significant difference (HSD) test using SPSS 16 statistical analysis software (SPSS Inc. Chicago, IL). The level of significant difference was set at p < 0.05. The fold differences of gene expression

Table. Drug concentrations used in this study

<table>
<thead>
<tr>
<th></th>
<th>Vehicle control group</th>
<th>Imatinib alone (IC₅₀)</th>
<th>Dimethylcellecoxib alone (IC₅₀)</th>
<th>Combination (1:3.5 ratio)</th>
<th>Combination (non-constant ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethylcellecoxib (µM)</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>8.75</td>
<td>17</td>
</tr>
<tr>
<td>Imatinib (µM)</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>2.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Table 4. Drug concentrations used in this study
Acknowledgements: This study was conducted with financial support that was provided by the Urmia University of Medical Sciences. The authors would like to thank members of the Cellular and Molecular Research Center of Urmia University of Medical Sciences, Urmia, Iran.

Conflict of interest statement: “The authors declared no conflict of interest” in the manuscript.

REFERENCES

32. Xiao H, Zhang Q, Lin Y, Reddy BS, Yang CS. Combination of atorvastatin and celecoxib synergistically induces cell cycle arrest and apoptosis in colon cancer cells. Int J Cancer. 2008; 122(9): 2115–2124. [CrossRef]

33. El-Awady RA, Saleh EM, Ezz M, Elsayed AM. Interaction of celecoxib with different anti-cancer drugs is antagonistic in breast but not in other cancer cells. Toxicol Appl Pharmacol. 2011; 255(3): 271–86. [CrossRef]

37. Li RJ, F.J.Gong GSZ. Cytotoxic activities of Celecoxib on leukemic cells and the synergistic effects of Celecoxib with Imatinib thereupon. Zhonghua Yi Xue Za Zhi. 2006; 86: 1417–1420

This is an open access article which is publicly available on our journal’s website under Institutional Repository at http://dspace.marmara.edu.tr.