
INTRODUCTION
Interferon was originally considered as the panacea for the 
treatment of virus infections, just as antibiotics and 
particularly penicillin had proved to be the case for bacterial 
infections. Initially, there were two approaches for the 
clinical use of interferon: exogenous and endogenous. 
Exogenous use of interferon was originally not very 
practical because of the limited amounts of exogenous 
interferon available. Thus, the main emphasis was put on 
the endogenous induction of interferon, and viruses would 
initially seem as the best choice for this purpose (as after 
all, Isaacs and Lindenmann had discovered interferon) (1) 
by using influenza virus as the inducer. To verify whether 
the induced antiviral substance was interferon, an assay 
system had to be developed that could quantitate the amount 
of interferon induced by any putative inducer, and for this 
titration, a challenge virus had to be used which in the early 
interferon days was either vaccinia virus (VV) or vesicular 
stomatitis virus (VSV). The first belongs to the poxviridae 
(with variola virus (smallpox) as the prototype), the second 
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ABSTRACT

There are at present no antivirals available which have been 
formally licensed for clinical use for the treatment of Ebola 
virus (EBOV) infections in humans. The most advanced to be 
approved for this purpose is favipiravir (T-705), a viral RNA 
polymerase inhibitor. Under consideration are BCX4430, also 
a viral RNA polymerase inhibitor, and 3-deazaneplanocin A 
and various other S-adenosylhomocysteine (SAH) hydrolase 
inhibitors. A number of compounds which have been approved 
for other purposes seem to interact with the cell entry of 

EBOV. Some compounds like pyrazofurin have been found to 
be exquisitely potent inhibitors of vesicular stomatitis virus 
(VSV). VSV belongs to the rhabdoviridae, a family closely 
related to the family of the filoviridae to which EBOV and 
Marburg virus belong. VSV, unlike EBOV and Marburg virus 
which require biosafety level 4, can be handled in conventional 
safety conditions.
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to the rhabdoviridae (with rabies virus as the prototype). In 
the 1960s, when I started my career with Prof. Piet De 
Somer as my mentor, Ebola and Marburg had not yet been 
discovered: Ebola virus (EBOV) was first isolated by 
Pattyn et al. in 1976 (2), that is 5 years before AIDS would 
be identified as a well-defined disease (the viral origin of 
this disease would be identified two years later, in 1983). In 
the late 1960’s, Maurice Hilleman’s group at Merck found 
that interferon could be induced by double-stranded RNAs 
[i.e. poly(I).poly(C)]; Tom Merigan at Stanford found that 
interferon could be induced by a synthetic polyanion (pyran 
copolymer) and, in De Somer’s Laboratory I found another 
synthetic polyanion (polyacrylic acid) as inducer of 
interferon. In 1968, I published, with my mentor as 
co-author, that both interferon and polyacrylic acid could 
protect newborn mice against a lethal VSV infection (3). 
Little I knew that almost 50 years later this observation 
could serve as a paradigm for an epidemic, Ebola, that 
would lead to a death toll of more than 10,000 victims in 
West Africa, and spread fear and concern over the whole 
world.

INTERFERON
Whenever a new virus infection emerges, or re-emerges, so 
does the interest in using interferon to combat this infection. 
This was the case in 2003 when SARS (severe acute 
respiratory syndrome) emerged (4), and it happened again 
with the current EBOV outbreak (5). In fact, interferon-β 

therapy was shown to prolong the survival of rhesus 
macaques infected with either EBOV or Marburg virus (5). 
The use of interferon, and, in particular, pegylated 
interferon, to curtail the current EBOV epidemic should be 
facilitated by its increased availability now that its 
usefulness in the treatment of hepatitis C virus infections is 
dwindling down because of the growing impact of direct-
acting antivirals (DAAs) to treat HCV infections. That 
interferon may be effective in the treatment of EBOV 
infections could somehow be presaged by the protective 
effects noted, now almost 50 years ago, by interferon and 
its inducers (i.e. polyacrylic acid) against VSV infection in 
newborn mice (3).

SULFATED POLYSACCHARIDES (Fig. 1)
Sulfated polysaccharides have been identified as potent and 
selective inhibitors of various enveloped viruses, in 
particular HIV, but also VSV (6). The prototype of this 
family is dextran sulfate, but mannan sulfate has proven 
almost 10-fold more potent against VSV in this respect (7). 
Pentosan polysulfate was described by Baba et al. (8) as a 
potent and selective HIV inhibitor. Dextran sulfate was first 
shown to be inhibitory to the replication of HIV in 1987 by 
Ueno and Kuno (9) and Ito et al. (10). Still in 1988, Baba 
and his coworkers (6) confirmed that the antiviral activity of 
sulfated polysaccharides included VSV, and that, as 
specifically shown for dextran sulfate, its inhibitory effect 
on HIV was due to the inhibition of virus binding 
(adsorption) to the cells (11), an observation that had been 
independently made by Mitsuya et al. (12) as well. Schols et 
al. (13) further described sulfated polymers such as PVAS 
(polyvinylalcohol sulfate) and its copolymer with 
polyacrylic acid (PAVAS) as potent and selective inhibitors 
of various enveloped viruses such as HSV, CMV, VSV, 
RSV, and toga-, arena- and retroviruses (including HIV). 
For dextran sulfate, inhibition of VSV replication was 
shown within a molecular weight range of 5,000 to 500,000 

Fig. 1. Sulfated polysaccharides.
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(14); curiously, heparin, while active against HIV, did not 
prove inhibitory to VSV (14). Antiviral activity against HIV 
and other enveloped viruses, including VSV, was later 
shown with a variety of sulfated polysaccharides extracted 
from seaweeds (15,16). It is obvious that all sulfated 
polymers, irrespective of their origin (synthetic or biologic), 
because of their activity against VSV, would deserve to be 
further evaluated for their activity against filoviruses such 
as EBOV. This advice may also be extended to the 
polyanionic (i.e. polysulfonate) dendrimers, which were 
found inhibitory to HIV but not evaluated against VSV (17).

IMP DEHYDROGENASE INHIBITORS (Fig. 2)
It is not evident that the IMP dehydrogenase (which 
converts IMP to XMP, that is then converted to GMP and 
thus replenishes the intracellular GTP pools) is an 
appropriate target for potential anti-VZV and/or –EBOV 
agents. Ribavirin [which has been identified in 1972 as a 
broad-spectrum antiviral agent (18,19)] is targeted at the 
IMP dehydrogenase (20), but it has only modest activity 
against VSV (21) and little or no activity against EBOV 
(22). Introduction of a fluorine in the imidazole moiety of 
the heterocyclic ring, thus resulting in the formation of 
FICAR (5-fluoro-1-β-D-ribofuranosylimidazole-4-
carboxamide) decreases the anti-VSV potency of ribavirin 
(1-β-D-ribofuranosyl-1,2,4-triazole-4-carboxamide) (21), 
but introduction of a 5-ethynyl function as in EICAR 
(5-ethynyl-1-β-D-ribofuranosylimidazole-4-carboxamide) 
markedly increases the anti-VSV potency (curiously, 
EICAR was found to inhibit VSV replication in HeLa cells 
at 4 µg/ml, while it was inactive against VSV in primary 
rabbit kidney (PRK) cells (23). Being an IMP dehydrogenase 
inhibitor, EICAR, like ribavirin, may not be primarily 

directed to the treatment of virus infections (HCV is an 
apparent exception, but here ribavirin is mainly acting as an 
immunosuppressive rather than antiviral agent). EICAR 
was originally envisaged as an anti-leukemic agent (24). Its 
potent inhibitory effect on IMP dehydrogenase (25) may 
point to its role as an immunosuppressive agent.

CYCLOPENTYL CYTOSINE (CARBODINE) AND 
CYCLOPENTENYL CYTOSINE (Fig. 3)
At a certain time, about 25 years ago, carbodine (carbocyclic 
cytidine, C-Cyd) (26) and cyclopentenyl cytosine, Ce-Cyd 
(27) generated much interest as broad-spectrum antiviral 
agents. With an IC50 of 0.7 µg/ml (Ce-Cyd) and 4 µg/ml 
(C-Cyd) against VSV (in PRK cells), this activity also 
extended to the family of the rhabdoviruses, which, again, 
could herald activity against the filovirus EBOV. Moreover, 

Fig. 2. IMP dehydrogenase inhibitors.

Fig. 3. Cyclopentyl and cyclopentenyl cytosine.
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C-Cyd and Ce-Cyd are targeted at the CTP synthetase, 
which converts UTP to CTP, and thus plays an important 
role in de novo biosynthesis of pyrimidine mononucleotides. 
This role could be considered as additive to the antiviral or 
antimetabolic action of pyrazofurin which is targeted at 
OMP decarboxylase that converts OMP to UMP, and thus 
interferes with a step higher up in de novo biosynthesis of 
pyrimidine mononucleotides. Pyrazofurin has been found to 
be extremely potent in inhibiting VSV replication.

SAH HYDROLASE: ADENOSINE ANALOGUES 
(Fig. 4)
Vidarabine (ara-A) has been known for half of a century as 
an antiviral agent specifically active against DNA viruses 
such as herpes simplex virus and vaccinia virus (28,29). 
The fact that it exhibited some activity against a (-)RNA 
virus, VSV (30) was therefore considered as a curiosum, 
and so was the anti-VSV activity of (S)-9-(2,3-

dihydroxypropyl)adenine [(S)-DHPA] (31). However, the 
discovery of 3-deazaadenosine (c3Ado) , the carbocyclic 
analogue of adenosine (C-Ado) and 3-deazaadenosine 
(C-c3Ado), which had all three been recognized as 
S-adenosylhomocysteine (SAH) hydrolase inhibitors, 
confirmed that all these compounds acted against VSV by 
inhibiting the SAH hydrolase (32), and, in fact, a close 
correlation was found between the anti-VSV activity and 
S A H  h y d r o l a s e  i n h i b i t i o n  ( 3 3 ) .  Tu b e r c i d i n 
(7-deazaadenosine, c7Ado) was not included in this 
comparative study: it proved extremely potent (minimal 
inhibitory concentration (MIC): 0.0007 µg/ml) in its anti-
VSV activity, but also quite cytotoxic (0.4 µg/ml) (34,35). 
Tubercidin and its related analogues toyocamycin and 
sangivamycin must have various effects other than SAH 
hydrolase inhibition pertaining to their cytotoxicity. In 
addition to tubercidin, toyocamycin and sangivamycin, 
C-nucleoside analogue, formycin, may seem too toxic to be 
further explored from an antiviral viewpoint (36,37).

Ara-A

5’-nor-C-Ado

(S)-DHPA

F-C-Ado

Tubercidin

Epimer of (-)-5’-noraristeromycin

C-Ado (X = N, Y = O)
c3Ado (X = CH, Y = O)
C-c3Ado (X = CH, Y = CH2)

Fig. 4. Adenosine analogues.



Erik De Clercq
Predicting antiviral activity against EBOV 145Marmara Pharm J 19: 141-152, 2015

Neplanocin A (X=N)
3-Deazaneplanocin A (X=CH)

6’R)-6’-C-methylneplanocin A (6’R)-6’-C-ethylneplanocin  
A (R = CH2CH3)
(6’R)-6’-C-ethenylneplanocin  
A (R = CH=CH2)
(6’R)-6’-C-ethynylneplanocin  
A (R = C≡CH)

DHCeA (X=N)
c3DHCeA (X=CH)

Fig. 5. Neplanocin analogues.

SAH HYDROLASE: NEPLANOCIN ANALOGUES 
(Fig. 5)
With the discovery of neplanocin A or (-)-9-[(trans-2,trans-
3-dihydroxy-4-(hydroxymethyl)cyclopent-4-enyl]adenine, 
3-deazaneplanocin A and their 5’-nor derivatives, 9-(trans-
2’,trans-3’-dihydroxycyclopent-4’-enyl)adenine (DHCeA) 
and 9-(trans-2’,trans-3’-dihydroxycyclopent-4’-enyl)-3-
deazadenine (c3DHCeA) (38,39), the link between SAH 
hydrolase inhibition and antiviral activity, especially against 
VSV, was clearly corroborated, and again, a close 
correlation was found between inhibition of SAH hydrolase 
and anti-VSV activity (40,41). In the latter article, I 
postulated that the viruses proven particularly sensitive to 
inhibition by SAH hydrolase inhibitors were the poxviridae, 
paramyxoviridae, rhabdoviridae (including rabies, 
infectious hematopoietic necrosis virus, and VSV) and 
reoviridae. Ten years later, Bray would demonstrate that 

3-deazaneplanocin A was exquisitely active, in vivo, against 
EBOV (42,43). In addition to neplanocin A and 
3-deazaneplanocin A (MIC50: 0.07 µg/ml for VSV), various 
other aristeromycin and neplanocin A analogues are active 
aga ins t  VSV a t  an  MIC of  c irca  0 .1  µg/ml : 
(±)5’-noraristeromycin (44), (-)5’-noraristeromycin (45,46), 
and 3-deaza-5’-noraristeromycin (46); (6’R)-6’-C-
methylneplanocin A (47), (6’R)-6’-C-ethenyl (or ethynyl) 
neplanocin A (48); (±)-6’β-D-fluoroaristeromycin (F-C-
Ado) (49); and epi(-)-5’-noraristeromycin (50). All these 
compounds may be assumed to act as SAH hydrolase 
inhibitors (51) and should be further explored for their 
potential as anti-EBOV drug candidates.

FAVIPIRAVIR (T-705) (Fig. 6)
Favipiravir is the only pyrazine compound shown to be 
antivirally active (52,53). It is active against both (-)RNA 

Fig. 6. Favipiravir and its metabolites.
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viruses (i.e. orthomyxo-, paramyxo-, arena-, bunya-, 
hantaviruses) and (+)RNA viruses (flavi-, picorna- and 
noroviruses). Although its potential activity against 
rhabdoviridae (rabies, VSV) was not assessed, it was shown 
to be efficacious in vivo, in mice, against EBOV infection 
(54,55). The compound (trade name: Avigan®) has been 
approved in Japan for the treatment of influenza A virus 
infections, and be made available in (sufficiently ?) large 
quantities for the treatment of EBOV infection in West 
Africa. Favipiravir is assumed to be targeted at the viral 
RNA polymerase. To this end, the compound should be 
converted by a phosphoribosyl transferase (similar to 
orotinic acid, adenine and hypoxanthine-guanine) to its 
ribosylmonophosphate, and then converted to its 
triphosphate, before interacting at the viral RNA 
polymerase, presumably in direct competition with GTP.

BCX4430 (Fig. 7)
As mentioned by Warren et al. (56), BCX4430, a 
C-nucleoside, was synthesized as part of a small-molecule 
library designed as inhibitors of viral RNA polymerase 
activity. BCX4430 would inhibit viral RNA polymerase 
through a non-obligate RNA chain termination, obviously 
after its (intracellular) phosphorylation to BCX4430 
triphosphate. BCX4430 proved particularly active against 
picorna-, flavi-, orthomyxo-, paramyxo- and filoviruses (its 
activity against rhabdoviruses such as VSV was, 
unfortunately, not determined). In vivo, BCX4430 
completely protected cynomolgus macaques against 
Marburg virus infection, and claimed to be the first 
compound shown to protect non-human primates from a 
filovirus infection (56). This may herald potential efficacy 
in the treatment of EBOV infection in humans. BCX4430 
has also been shown to offer complete protection from 
mortality in hamsters infected with yellow fever virus (57).

Pyrazofurin (Fig. 8)
Pyrazofurin, a C-nucleoside, was found to be extremely 

potent against VSV, irrespective of the cell culture used: 
primary rabbit kidney (PRK) (MIC: 0.01 µg/ml), human 
skin fibroblast (HSF) (MIC: 0.04 µg/ml) and HeLa (MIC: 
0.02 µg/ml) (58). Pyrazofurin was about 1,000-fold more 
potent against VSV than ribavirin. However, its efficacy 
against VSV in vivo could not be assessed as the compound 
proved too toxic to mice: its 50% lethal dose (LD50) was 
approximately 5 mg/kg per day. This in vivo toxicity also 
hampered the further evaluation of pyrazofurin against 
murine leukemia virus, which, like VSV, appeared 
exquisitely sensitive (MIC: 0.01 µg/ml) to inhibition by 
pyrazofurin (59). Pyrazofurin (originally named 
pyrazomycin) has since long been shown to inhibit de novo 
pyrimidine mononucleotide biosynthesis at the level of 
orotidylic acid (OMP) decarboxylase (which converts OMP 
to UMP) (60,61).

EBOV INHIBITORS INTERACTING WITH VIRAL 
ENTRY (Fig. 9)
Mannose-specific lectins
Griffithsin and similar lectins that bind to the terminal 
mannose residues of the glycoproteins may be potentially 
useful in the treatment of EBOV infections (62,63).
Endoplasmic reticulum (ER) glucosidase inhibitors
The imino sugar 1-deoxynojirimycin is a glucose mimic, 
with a nitrogen atom replacing the oxygen, that inhibits the 
ER α-glucosidases I and II, which are essential in the 
maturation of viral envelope glycoproteins (64). Its 
derivatives IHVR11029, IHVR17028 and IHVR19029 were 
shown to protect mice against the mortality of Marburg and 
EBOV infections (65).
Benzylpiperazine adamantane diamides
EBOV entry into the host cells requires the cholesterol 
transporter Niemann-Pick C1 (66), and this process can be 
blocked by benzylpiperazine adamantane diamides (67).
Rhodamine derivatives
The rhodamine derivative LJ-001 inhibits the cell entry of 

Fig. 7. BCX4430. Fig. 8. Pyrazofurin.
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Fig. 9. Miscellaneous compounds inhibiting EBOV entry.

IHVR11029
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Verapamil
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various enveloped viruses such as influenza A, HIV, pox-, 
arena-, bunya-, paramyxo-, flavi- and filoviruses, including 
EBOV (68).
Selective estrogen receptor modulators (SERMS)
SERMS (i.e. clomifene and toremifene), through an off-
target, interfere with a late step of EBOV entry, thereby 
preventing the fusion process (69).
Ion channel blockers
The ion channel blockers amiodarone, dronedarome and 
verapamil were found to inhibit the cell entry of filoviruses 
(i.e. EBOV) (70) at the concentrations required for anti-
arrhythmic therapy in humans (i.e. 1.5-2.5 µg/ml).

CHLOROQUINE (Fig. 10)
Chloroquine has been known since 1934 as an anti-malaria 
agent. Concomitantly with, and subsequently to, the 
emergence of HIV, SARS coronavirus and finally EBOV, 
chloroquine was shown to inhibit HIV (71), SARS 
coronavirus (72), and EBOV (73). It inhibits both the 
endocytosis and exocytosis of virus particles, and in 
addition, downregulates IFN-γ and TNF-α production (74).

CONCLUSIONS
Furtherst advanced in the treatment of EBOV infections is 
favipiravir (T-705), also because its human use has proved 
safe and efficacious in the treatment of influenza virus 
infections. It is targeted at the viral RNA polymerase; 
although effective against (+)RNA and (-)RNA viruses, its 
activity against the (-)RNA rhabdoviruses (i.e. VSV) has 
not been assessed. The latter is true for BCX4430 as well, 
which in addition is a C-nucleoside, for which the safety/
toxicity profile in humans remains to be ascertained. Plenty 
of S-adenosylhomocysteine hydrolase (SAH) inhibitors 
have been shown to be highly active against VSV, and one 
of them, 3-deazaneplanocin A, has also been shown to be 
effective against EBOV. Pyrazofurin is an highly potent 

inhibitor of VSV, but its activity against EBOV has not 
been evaluated. Like BCX4430, pyrazofurin is a 
C-nucleoside, which may be considered as a liability for its 
therapeutic (antiviral) usefulness. Ribavirin and other IMP 
dehydrogenase inhibitors may not seem particularly 
effective against VSV and EBOV. C-Cyd and Ce-Cyd are 
sufficiently active against VSV to be further evaluated for 
their potential activity against EBOV. This suggestion 
should also be extended to the sulfated polysaccharides 
which have proved quite effective in vitro against VSV, 
never evaluated against EBOV, but, once upon a time, 
considered for their potential in the treatment of HIV 
infections. Being a prodrug of cidofovir, there is no 
rationale whatsoever for the activity of brincidofovir 
(CMX001) against EBOV. Given its historically founded 
activity against VSV, interferon should be entertained for 
the treatment of EBOV infections. In the meantime, 
numerous compounds licensed for the most disparate 
clinical indications have been found to interfere with the 
cell entry of EBOV. And the list of antiviral drugs to be 
envisaged for their potential use against EBOV should be 
incomplete if it were not finalized by chloroquine.
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EBOV enfeksiyonlarının tedavisi amacıyla 
ilaç geliştirme sürecinde VSV örneği

ÖZET

İnsanlarda görülen Ebola virüs (EBOV) enfeksiyonlarının 
tedavisinde kullanılmak üzere bir antiviral ilaç henüz sağlık 
otoritelerince onaylanmamıştır.  Bu amaçla kullanılmak üzere 
onaylanmaya en yakın olan ilaç bir viral RNA polimeraz 
inhibitörü olan favipiravir (T-705)’tir.  Üzerinde çalışılan diğer 
bileşikler ise bir viral RNA polimeraz inhibitörü olan BCX4430 
ve S-adenosilhomosistein (SAH) hidrolaz inhibitörü olan 
3-deazaneplanosin A’dır. Diğer endikasyonlar için onaylanan 
bileşiklerden Ebola virüs (EBOV) enfeksiyonlarının tedavisinde 

kullanılmak üzere denenenlerin ise Ebola virüs’ün hücre 
penetrasyon faktörleri ile etkileştiği gözlenmiştir. Pirazofurin 
gibi bazı bileşiklerin ise veziküler stomatitis virüs’ün (VSV) 
potansiyel inhibitörleri olduğu tespit edilmiştir. VSV, 
rhabdoviridae ailesine ait bir virüstür ve bu virüs ailesi EBOV 
ve Marburg virüs’ünün mensubu olduğu filoviridae virüs ailesi 
ile yüksek oranda benzerlik göstermektedir. EBOV ve Marburg 
virüs’ü biyogüvenlik derecesi 4 oranında çalışma güvenliği 
gerektirirken VSV ile mutat güvenlik koşullarında 
çalışılabilmektedir.
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