Evaluation of antimicrobial activity of five *Vincetoxicum* taxa growing in Turkey

Sevda GÜZEL 1 *, Mahmut ÜLGER 2, Gönül ASLAN 3, Gamze KÖKDİL 1

1 Department of Pharmacognosy, Faculty of Pharmacy, Mersin University, 33169, Mersin, Turkey.
2 Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, 33169, Mersin, Turkey.
3 Department of Medical Microbiology, Faculty of Medicine, Mersin University, 33169, Mersin, Turkey.
* Corresponding Author. E-mail: guzelsevda@mersin.edu.tr (S.G.); Tel. +90-553-126 36 92; ORCID No: 0000-0002-6642-5824.

Received: 16 February 2018 / Revised: 28 April 2018 / Accepted: 04 May 2018

ABSTRACT: The antibacterial, antifungal and antymycobacterial effects of ethanolic extracts obtained from aerial parts and roots of five *Vincetoxicum* taxa (*V. canescens* subsp. *canescens*, *V. canescens* subsp. *pedunculata*, *V. parviflorum*, *V. fuscatum* subsp. *fuscatum* and *V. fuscatum* subsp. *boissieri*) were tested against two Gram (+) bacterial strains (*Staphylococcus aureus* and *Bacillus subtilis*), three Gram (-) bacterial strains (*Escherichia coli*, *Acinetobacter baumannii* and *Aeromonas hydrophila*), three fungal strains (*Candida glabrata*, *Candida parapsilosis* and *Candida tropicalis*) and *Mycobacterium tuberculosis* by using the broth dilution method. Ethambutol, Isoniazid, Ampicillin and Fluconazole were used as reference antimicrobial agents. All tested extracts showed significant antibacterial activity against *A. baumannii* with MIC values ranging from 31.25 to 62.5 µg/ml when compared to reference drug Ampicillin with 125 µg/ml MIC value. Moreover, the extracts obtained from aerial parts of *V. fuscatum* subsp. *boissieri* and roots of *V. canescens* subsp. *pedunculata* were found the most effective extracts against *A. baumannii* with 31.25 µg/ml MIC value.

KEYWORDS: *Vincetoxicum*; antimicrobial activity; plant extract; broth microdilution method; *Acinetobacter baumannii*.

1. INTRODUCTION

Infectious diseases including nosocomial infections caused by various microorganisms have become a major health problem worldwide due to emerging multi-drug resistant strains. Antimicrobial resistant strains lead to serious infections like urinary tract, pneumonia and bloodstream infections [1, 2]. New antimicrobial agents with novel mechanisms of action are needed to fight effectively against infectious diseases [1]. This unmet need resulted from a variety of factors such as manufacturing synthetic agents with high costs, various adverse effects and ability to develop resistance to all classes of antimicrobial agents used against them [1, 3, 4]. Nowadays, one of the most popular way of exploring new antimicrobial agents with low cost is to use medicinal plants as a source [4, 5]. More than 20.000 plant species with medicinal properties are listed by The World Health Organization (WHO) for treating various illnesses like pneumonia, diarrhea, ulcers, colds and bronchitis [6]. Furthermore, according to literature, approximately 40 % of antimicrobial agents are naturally sourced [5].

The genus *Vincetoxicum* N.M. Wolf which is one of the members of Apocynaceae; subfamily Asclepiadoideae [7, 8] comprises nearly 100 species which are distributed throughout Asia, Europe, Japan [9] and North America [10]. Leaves, rhizome and dry seeds of *Vincetoxicum* species have various usages in folk medicine due to medicinal purposes [11]. *V. hirundinaria* Medik, *V. nigrum* (L.) Moench and *V. stocksii* Ali & Khatoon have been traditionally used in different medicinal systems like European and Chinese for the treatment of neurosis, malaria, scrofula, injuries, rupture, fever, scabies, wounds [7, 11, 12] and as expectorant, diuretic, emetic [13, 14], antileishmanial [12], antitumoral [7, 15], laxative and diaphoretic agents [7]. In Pakistan, poultice of *V. stocksii* has been externally used for the treatment of injuries, wounds and cancers [12]. In the field of veterinary medicine, roots of *V. hirundinaria* have been used to treat dropsy and some other illnesses [7]. The plant is known as “dompte-venin” in France and used as emetic and expectorant [16]. Infusion and decoction of the roots and whole plant are used as antidote for poisons in Italy [17], while in Turkey the plant is known as “Kırlangıç kuyruğu or Panzehir otu” and emetic properties of roots were reported [18].
East Anatolia, *V. canescens* (Willd.) Decne. subsp. *canescens* is locally known as "Zilasur or Zehir otu" [19, 20], and crushed parts of the plant have been externally used for the treatment of scabies [19] and fungal infections [19, 20].

Antifungal and antibacterial activities of *V. rossicum* (Kleo.) Barb. and *V. nigrum* [21, 22]; antifungal, antibacterial [12, 23], antileishmanial and antimalarial activities of *V. stocksii* [12] and antioxidant activity of *V. lutea* L. [11] have been determined. Furthermore, cytotoxic [24, 25], antifeedant and growth inhibition [26-28] effects of the genus were also reported.

Phytochemical investigations revealed the presence of triterpenoids [13, 15], phenanthroindolizidine alkaloids [21, 22, 25], steroids [15] and sugars [27, 29] in whole parts of the *Vincetoxicum* species. Moreover, acetophenone, volatile compounds [13], starch [27] and saponins [27, 30] were detected from the roots, and alkanols [15] and tannins [28] were detected from the aerial parts. As another secondary metabolites flavonoids [14, 23] and steroidal glycosides [14, 15] were found in *Vincetoxicum* species.

The genus *Vincetoxicum* is one of the largest genera of the subfamily Asclepiadoideae in Turkey and represented by 10 taxa of them (*Vincetoxicum canescens* (Willd.) Decne. subsp. *pedunculata* Browicz, *Vincetoxicum parviflorum* Decne. and *Vincetoxicum fuscatum* Hornem. subsp. *boissieri* (Kusn) Browicz) are endemic to Turkey [30, 31]. *Vincetoxicum* species growing wild in Turkey were firstly investigated in our previous studies for their phytoconstituents [28], antifeedant activities against *Spodoptera littoralis* and *Leptinotarsa decemlineata* [27, 28] and antifungal activity against *Aspergillus fumigatus* [32]. There is no investigation on antibacterial activities of Turkish *Vincetoxicum* species in the literature. Therefore, the aim of the present study was to evaluate antibacterial, antifungal and antimycobacterial effects of ethanolic extracts obtained from aerial parts and roots of five *Vincetoxicum* taxa (*V. canescens* subsp. *canescens*, *V. canescens* subsp. *pedunculata*, *V. parviflorum*, *V. fuscatum* subsp. *fuscatum* (Hornem.) Reichb. and *V. fuscatum* subsp. *boissieri*) against two Gram (+) bacterial strains [*Staphylococcus aureus* (ATCC 25925) and *Bacillus subtilis* (ATCC 6633)], three Gram (-) bacterial strains [*Escherichia coli* (ATCC 25923), *Acinetobacter baumannii* (ATCC 02026) and *Aeromonas hydrophila* (ATCC 95080)] and *Mycobacterium tuberculosis* H37Rv, and three fungal strains [*Candida glabrata* (ATCC 90030), *Candida parapsilosis* (ATCC 22019) and *Candida tropicalis* (ATCC 750)].

2. RESULTS AND DISCUSSION

The antibacterial, antifungal and antimycobacterial activities of ethanolic extracts obtained from different parts of *V. canescens* subsp. *canescens*, *V. canescens* subsp. *pedunculata*, *V. parviflorum*, *V. fuscatum* subsp. *fuscatum* and *V. fuscatum* subsp. *boissieri* growing in Turkey were tested against Gram (+) (*S. aureus, B. subtilis*), Gram (-) bacterial strains (*E. coli, A. baumannii, A. hydrophila*), fungal strains (*C. glabrata, C. parapsilosis, C. tropicalis* and *M. tuberculosis*). The percentage yields of ethanolic extracts with further details of the studied plants were given in Table 1. The antibacterial [33] and antifungal [34-36] activities were performed using the broth dilution method assay and antimycobacterial activity [37] was performed using the REMA plate method assay. Ampicillin, Ethambutol, Isoniazid and Fluconazole were used as reference antimicrobial agents. The antibacterial and antifungal activity results were given in Tables 2 and 3, respectively.

The antibacterial activity results revealed that the ethanolic extracts obtained from aerial parts and roots of studied plants exhibited antibacterial activity with different MIC values against all tested bacterial strains when compared to reference antibacterial agents (Ampicillin, Ethambutol, Isoniazid). All tested extracts showed significant antibacterial activity against *A. baumannii* ranging from 31.25 to 62.5 µg/ml MIC values when compared to reference drug Ampicillin with 125 µg/ml MIC value. Especially, the extracts of roots of *V. canescens* subsp. *pedunculata* and aerial parts of *V. fuscatum* subsp. *boissieri* were found the most effective against *A. baumannii* with 31.25 µg/ml MIC value (Table 2).

Against *B. subtilis*, the ethanolic extracts obtained from aerial parts of *V. parviflorum* and roots of *V. canescens* subsp. *canescens* indicated significant antibacterial efficiency with 31.25 µg/ml MIC value while the other tested extracts showed lower antibacterial efficiency with 62.5 µg/ml MIC value. Comparison of MIC values of tested extracts and reference drug demonstrated that tested extracts were not found effective as reference drug Ampicillin (0.9 µg/ml MIC value) (Table 2).

The all studied extracts showed growth inhibitory effect against *M. tuberculosis* with 31.25 µg/ml MIC value except root extracts of *V. fuscatum* subsp. *fuscatum* with 62.5 µg/ml MIC value. However, the effectiveness of the all extracts was found lower than reference antimycobacterial agents Isoniazid and Ethambutol (0.97 and 1.95 µg/ml MIC values, respectively) (Table 2).
The results of antifungal activity studies demonstrated that all the studied plants displayed growth inhibition effects on tested fungal strains with different MIC values ranged from 15.62 to 62.5 μg/ml. When compared the efficiency of all tested extracts on C. glabrata, the ethanol extract obtained from aerial parts of V. fuscatum subsp. boissieri found the most effective with 31.25 μg/ml MIC value. Also root extracts of V. parviflorum and V. fuscatum subsp. fuscatum showed the highest efficiency against C. tropicalis with the same MIC value (31.25 μg/ml). The root extracts of all studied plants exhibited significant antifungal activity on C. parapsilosis with 15.62 μg/ml MIC value, except root extract of V. canescens subsp. pedunculata (62.5 μg/ml MIC value). The Fluconazole had different MIC values against C. glabrata, C. parapsilosis and C. tropicalis with 3.90, 15.62 and 3.90 μg/ml, respectively. Comparison of MIC values of extracts and reference antifungal agent Fluconazole indicated that the plant extracts exhibited lower efficiency than reference agent (Table 3).

Some of the secondary metabolites including flavonoids, phenolic acids, tannins, saponins, alkaloids, terpenoids, essential oils [38, 39], polysaccharides and sterols [40] were reported to have antimicrobial properties. Choosing the extraction solvent is important to get active component extract. Ethanol was a suitable solvent for phenolics, alkaloids, sterols, terpenoids [39] and broad range of polar constituents [41]. So in the present study ethanol was chosen as an extraction solvent.

In our previous studies, phytochemical screening of these Vincetoxicum taxa indicated that the aerial parts of the whole plants contain alkaloids, flavonoids, sugars and cardiacactive glycosides, and also three of them (V. fuscatum subsp. boissieri, V. fuscatum subsp. fuscatum and V. parviflorum) contain tannins [28], and the roots of the whole plants contain steroidal glycosides, starch and sugars, and one of them (V. fuscatum subsp. boissieri) contains saponins [27]. Furthermore, presence of phenanthroindolizidine alkaloids in aerial parts of the tested plants were demonstrated by LC/MS/MS analysis [28].

Antimicrobial activity of different Vincetoxicum species were examined in a few study [21, 23, 32, 42]. Bazzaz and Haririzadeh (2003) tested antimicrobial activity of methanol extract obtained from total parts of Vincetoxicum pumilum Decne. against seven bacterial strains including B. subtilis, S. aureus, E. coli, and a fungus Candida albicans by using cylinder plate assay method. They found that the plant extract showed significant antifungal activity against C. albicans while there were no effects observed against tested bacteria [42]. Zaidi and Crow (2005) studied various fractions (ethyl acetate, hexane, butanol, chloroform and water) of methanol extract obtained from V. stocksii for their antimicrobial activities against 12 fungal strains including C. albicans and 12 bacterial strains including B. subtilis, E. coli and S. aureus by agar well diffusion and disk diffusion assays. The study results indicated that the tested plant exhibited significant antimicrobial activity against B. subtilis and C. albicans and moderate activity against E. coli, while there were no activity observed against S. aureus at 200 μg/ml concentration [23]. Mogg et al. (2008) evaluated antimicrobial activity of ethanolic extracts obtained from roots, fresh leaves and mature fruits of V. rossicum against some fungi and bacteria. They found that the plant had antimicrobial activity, and the root extract also showed greater activity than the leaves [21]. In our previous study, four extracts of increasing polarity (CH$_2$Cl$_2$, CH$_3$Cl, MeOH: 1:1, MeOH and total EtOH) obtained from root and aerial part of each of the five Vincetoxicum taxa evaluated for their antifungal activity against A. fumigatus at 1 mg/ml concentration using agar dilution method. In tested forty extracts, the CH$_2$Cl$_2$ extracts of aerial part and root of V. parviflorum and root of V. canescens subsp. canescens were exhibited the highest inhibitory effect against A. fumigatus with inhibition value of 45.86% [32]. In the present study the root extracts of all studied plants exhibited significant antifungal activity against C. parapsilosis.

Generally, Gram (-) bacterial strains are more resistant than Gram (+) bacterial strains [40, 43], while the cell wall of the Gram (-) bacteria are more complex than the Gram (+) bacteria. The outer membranes of Gram (-) and Gram (+) bacteria are arranged differently so the differences are affected penetration of macromolecules during the treatment [44]. Moreover, Gram (-) bacteria are more resistant against natural components than Gram (+) bacteria. The hydrophilic cell wall structure of Gram (-) bacteria contains lipopolysaccharide and this structure inhibits the penetration of hydrophobic oils, steroids and extracts, and accumulation of them in the target cell membrane. This information confirmed why Gram (+) bacteria indicated greater sensitivity against natural products than Gram (-) bacteria [40]. According to the literature this is the first study on antibacterial effect of Vincetoxicum genus against Gram (-) nosocomial pathogen A. baumannii which becomes a severe healthcare problem worldwide due to its ability to gain resistance to all classes of antimicrobial compounds used against it [45]. This microorganism takes clinical attention in intensive care units (ICU) and also responsible from broad range of infections such as bacteremia, urinary tract, meningitis, bloodstream, ventilator associated pneumonia and infections of surgical wound [2]. In the present study, all tested plants showed stronger antibacterial activity against A. baumannii when compared to reference drug Ampicillin. The extract of the root of V. canescens subsp. pedunculata and aerial part of V. fuscatum subsp. boissieri were found

https://doi.org/10.12991/jrp.2018.76
Marmara Pharm J 2018; 22(3): 365-373
the most effective. The findings indicated that the tested plants can be a promising source of antimicrobial agents in the treatment of infections caused by A. baumannii.

3. CONCLUSION

The activity of five *Vincetoxicum* taxa on tested microorganisms was indicated that further examination with detailed studies is needed to confirm the effect of them to use these plants as a source of antimicrobial agents for the treatment of infectious disease. Especially, examination of two *Vincetoxicum* taxa (*V. canescens* subsp. *pedunculata* and *V. fuscum* subsp. *boissieri*) which exhibited the highest effectiveness against *A. baumannii* is required. In a conclusion, further investigations on various microorganisms, animal studies, mode of action mechanisms, toxicity tests, comparison of the efficiency of extracts and active components are another important studies should be done in the future.

4. MATERIALS AND METHODS

4.1. Chemicals

Isoniazid (Sigma, I3377), Fluconazole (Sigma, F8929), Ethambutol (Sigma, E4630), RPMI 1640 Medium (Sigma, R6504), 3-(N-morpholino)-propanesulfonic acid (MOPS, Sigma, M1254), Resazurin sodium salt powder (Sigma R7017), Ethanol (EtOH) and Dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Middlebrook 7H9 broth and casitone, glycerol and oleic acid-albumin-dextrose-catalase were purchased from Becton Dickinson (Sparks, MD, USA). The all solutions were prepared with distilled water and for the experiments freshly prepared solutions were used.

4.2. Microbial strains

Bacterial strains [*Staphylococcus aureus* (ATCC 25925), *Escherichia coli* (ATCC 25923), *Bacillus subtilis* (ATCC 6633), *Acinetobacter baumannii* (ATCC 02026) and *Aeromonas hydrophila* (ATCC 95080)], fungal strains [*Candida glabrata* (ATCC 90030), *Candida parapsilosis* (ATCC 22019) and *Candida tropicalis* (ATCC 750)] and *Mycobacterium tuberculosis* H37Rv were obtained from the Refik Saydam Hıfzıssıhha Institute, Ankara, Turkey.

4.3. Plant materials

Plant materials were collected from their natural habitats in different regions of Turkey and identified by Dr. Sevda Güzel and confirmed by Dr. Ahmet İlçim, Department of Biology, Faculty of Arts and Science, Mustafa Kemal University (Antakya, Turkey). The dried voucher specimens were stored in the herbarium of the Mustafa Kemal University (Further details were given in Table 1).

4.4. Extraction procedure

The powdered air dried aerial parts and roots were extracted three times with 96% ethanol (500 ml of solvent per 100 g of plant material), sonicated for 30 min. and at room temperature left overnight with shaking [21]. After filtrated with Whatman No.1 filter paper, the solvents were evaporated at 35–40°C under reduced pressure by using vacuum evaporator (Heidolph- Rotar TLR 1000) and the extracts were kept in dark at 4°C.

4.5. Antimicrobial assays

The antimicrobial activities of ethanolic extracts obtained from five *Vincetoxicum* taxa were evaluated by using two different methods. The broth dilution method assay was used for antibacterial [33] and antifungal [34-36] activities and the resazurin microtitre assay (REMA) plate method was used for antitymocobacterial activity [37].

2.5.1. Antibacterial assay

Antibacterial activity of the extracts was tested against two Gram (+) bacterial strains: *S. aureus* (ATCC 25925) and *B. subtilis* (ATCC 6633); three Gram (-) bacterial strains: *E. coli* (ATCC 25923), *A. baumannii* (ATCC 02026) and *A. hydrophila* (ATCC 95080). Ampicillin, which is a semi-synthetic penicillin with broad spectrum, was chosen as a reference antibacterial agent. Antibacterial assay was performed using a literature method [33]. Stock solutions of the extracts (200 μg/ml) were prepared by dissolving 2 mg of the extract in 1 ml of DMSO. The 1 ml of Mueller-Hinton broth was added to the all sterilized tubes, then stock solution of the extract was added to the first tube which contain Mueller - Hinton broth. After that, 1 ml solution was
Table 1. List of plant materials, their origins, voucher references and percentage yields of ethanol extracts.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Endemic taxon*</th>
<th>Phytogeography*</th>
<th>Locality*</th>
<th>Altitude (m)</th>
<th>Voucher references</th>
<th>Extracted Part</th>
<th>Yields (%)bc</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. canescens subsp. canescens (Willd.) Dece.</td>
<td>-</td>
<td>Irano-Turanian element</td>
<td>C6: Kahramanmaraş, Engizek Mountain, Fallow fields.</td>
<td>1000</td>
<td>MKUH 1283</td>
<td>Aerial part</td>
<td>13.78</td>
</tr>
<tr>
<td>V. canescens (Willd.) Dece. subsp. pedunculata Browicz</td>
<td>Endemic</td>
<td>East Mediterranean element</td>
<td>B3: Afyon, Dinar; Kumalı Mountain.</td>
<td>1500-1600</td>
<td>MKUH 1284</td>
<td>Aerial part</td>
<td>11.47</td>
</tr>
<tr>
<td>V. fasciculatum subsp. fasciculatum (Hornem.) Reichb.</td>
<td>-</td>
<td>Unknown</td>
<td>B6: Kayseri, Pınarbaşı, Hınız Mount.</td>
<td>1800</td>
<td>MKUH 1315</td>
<td>Aerial part</td>
<td>20.8</td>
</tr>
<tr>
<td>V. fasciculatum (Hornem.) Reichb. subsp. bousieri (Kunp) Browicz</td>
<td>Endemic</td>
<td>Irano-Turanian element</td>
<td>A5: Amasya, Ferhat Mountain.</td>
<td>460</td>
<td>MKUH 1316</td>
<td>Aerial part</td>
<td>15.85</td>
</tr>
<tr>
<td>V. parviflorum Dece.</td>
<td>Endemic</td>
<td>Irano-Turanian element</td>
<td>A7: Trabzon.</td>
<td>1200</td>
<td>MKUH 1334</td>
<td>Aerial part</td>
<td>24.44</td>
</tr>
</tbody>
</table>

*Information are based on the Flora of Turkey. bc Extract yields of aerial parts [28] and roots [27] were taken from previous studies.

Table 2. The MIC values (µg/ml) of the tested extracts and reference drugs against bacterial strains and mycobacterial strain.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Used part</th>
<th>Staphylococcus aureus (ATCC 25925)</th>
<th>Bacillus subtilis (ATCC 6633)</th>
<th>Acinetobacter baumannii (ATCC 02026)</th>
<th>Escherichia coli (ATCC 25922)</th>
<th>Aeromonas hydrophila (ATCC 95080)</th>
<th>M. tuberculosis H37Rv</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. canescens subsp. canescens</td>
<td>Aerial part</td>
<td>125</td>
<td>62.5</td>
<td>62.5</td>
<td>250</td>
<td>125</td>
<td>31.25</td>
</tr>
<tr>
<td>V. canescens subsp. pedunculata</td>
<td>Root</td>
<td>>500</td>
<td>31.25</td>
<td>62.5</td>
<td>125</td>
<td>250</td>
<td>31.25</td>
</tr>
<tr>
<td>V. fasciculatum subsp. fasciculatum</td>
<td>Aerial part</td>
<td>125</td>
<td>62.5</td>
<td>62.5</td>
<td>250</td>
<td>125</td>
<td>31.25</td>
</tr>
<tr>
<td>V. fasciculatum subsp. bousieri</td>
<td>Root</td>
<td>125</td>
<td>62.5</td>
<td>31.25</td>
<td>250</td>
<td>125</td>
<td>31.25</td>
</tr>
<tr>
<td>V. parviflorum</td>
<td>Aerial part</td>
<td>125</td>
<td>31.25</td>
<td>62.5</td>
<td>250</td>
<td>125</td>
<td>31.25</td>
</tr>
<tr>
<td>Reference Drug</td>
<td>Ampicillin</td>
<td>31.25</td>
<td>0.9</td>
<td>125</td>
<td>15.62</td>
<td>31.25</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td>Isoniazid</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>Ethambutol</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>1.95</td>
</tr>
</tbody>
</table>

The MIC values were determined in duplicate with deviations within one two-fold dilution. NT: Not tested.
transferred from first tube to the subsequent tube, and this process was repeated sequentially for serial dilution. Thus, each tube contained 1 mL of solution in serially descending concentrations (1000, 500, 250, 125, 62.5, 31.25, 15.62, 7.8, 3.9 and 1.9 μg/mL). This dilution series were also applied for Ampicillin [33]. Standard strains working suspensions were prepared in sterile tubes and turbidity adjusted to match McFarland standard No: 0.5, then 1:20 dilution of each suspension was prepared by using distilled water. 10 μL of prepared bacterial suspension was added in each plate and bacterial concentration of each plate adjusted to 5 × 10^6 CFU/mL [46]. The microbial growth effects of tested solvent (DMSO) was also checked with a control test containing inoculated broth and DMSO was added at the same dilutions mentioned above. The results of control test indicated that the tested solvent had no growth effect on bacterial strains. The minimal inhibitory concentration (MIC) value of each extract was determined in duplicate tests.

2.5.2. Antimycobacterial assay

1. Culture medium: For the REMA plate method assay 7H9-S medium was prepared with Middlebrook 7H9 broth including 0.1% casitone, 0.5% glycerol and 10% oleic acid-albumin-dextrose-catalase.

2. Resazurin reagent: The resazurin sodium salt powder was used for preparing resazurin reagent. A working solution of resazurin reagent was made in distilled water at 0.01% (w/v) concentration and filtered to sterilize by using 0.22 μm membrane filter (Ministar, Sartorius Ste. Germany); the prepared solution was kept for up to 1 week at 4°C.

3. The REMA plate method: This method was performed in duplicate according to the method mentioned at Nateche et al. [37] with minor changes. As the standard strain M. tuberculosi H37Rv and as reference antimycobacterial agents Ethambutol and Isoniazid were used. Stock solutions of the studied extracts and reference agents were prepared at 1000 μg/mL concentration in DMSO. 0.22 μm membrane filters were used for filtration procedure of the prepared solutions. In a 96-well microtitre plate, two-fold dilution series of all solutions were made by using 7H9-S (100 μL). The concentrations ranging from 0.12 to 250 μg/mL were tested. A sterility control without inoculum and a growth control containing no antibiotic were added in tested plate. H37Rv inoculum was made by resuspending a loopful of the Lowenstein-Jensen Biotech GmbH, Goettingen, Germany) and this inoculum was diluted two-fold in 7H9-S medium containing 0.1% casitone, 0.5% glycerol and 10% oleic acid-albumin-dextrose-catalase.

4. MIC determination: The MIC values were determined in duplicate with deviations within one two-fold dilution.

Table 3. The MIC values of the tested extracts and reference drug against fungal strains (μg/ml).

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Used part</th>
<th>Candida glabrata (ATCC 90030)</th>
<th>Candida tropicalis (ATCC 750)</th>
<th>Candida parapsilosis (ATCC 22019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. canescens subsp. canescens</td>
<td>Aerial part</td>
<td>62.5</td>
<td>62.5</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td>Root</td>
<td>62.5</td>
<td>62.5</td>
<td>15.62</td>
</tr>
<tr>
<td>V. canescens subsp. pedunculata</td>
<td>Aerial part</td>
<td>62.5</td>
<td>62.5</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td>Root</td>
<td>62.5</td>
<td>62.5</td>
<td>62.5</td>
</tr>
<tr>
<td>V. fuscatum subsp. fuscatum</td>
<td>Aerial part</td>
<td>62.5</td>
<td>62.5</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td>Root</td>
<td>62.5</td>
<td>31.25</td>
<td>15.62</td>
</tr>
<tr>
<td>V. fuscatum subsp. boissieri</td>
<td>Aerial part</td>
<td>31.25</td>
<td>62.5</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td>Root</td>
<td>62.5</td>
<td>62.5</td>
<td>15.62</td>
</tr>
<tr>
<td>V. parviflorum</td>
<td>Aerial part</td>
<td>62.5</td>
<td>62.5</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td>Root</td>
<td>62.5</td>
<td>31.25</td>
<td>15.62</td>
</tr>
</tbody>
</table>

Reference Drug

| Fluconazole | 3.90 | 15.62 | 3.90 |

* The MIC values were determined in duplicate with deviations within one two-fold dilution.
2.5.3. Antifungal assay

The antifungal activity of the each extract was studied against three fungal strains [C.
glabrata (ATCC 90030), C. parapsilosis (ATCC 22019) and C. tropicalis (ATCC 750)] by using the
microdilution broth method [35, 36] which was mentioned at the NCCLS standard
document M27-A2 [34]. A synthetic triazole antifungal agent, Fluconazole was chosen as a
reference drug. Antifungal assay was carried out in RPMI 1640 Medium which
buffered to pH 7.0 with 0.165 M 3-(N-morpholino)-propanesulfonic acid. The each standard strain's
working suspension was prepared by a 1:100 dilution followed by a 1:20 dilution of the stock suspension with
RPMI 1640 medium. Stock solutions of reference antifungal agent and each studied extract were made in
DMSO at 100 μg/ml concentration. For filtration of the prepared solutions 0.22 μm membrane filter was used.
Two-fold dilution series of reference antifungal agent and the solutions were prepared in a 96-well microtitre
plate by using RPMI 1640 medium (100 μl). The concentrations range from 0.12 to 250 μg/ml were tested.
A sterility control without inoculum and a growth control containing no antibiotic were added in each plate.
Also 100 μl of the working inoculum suspension was put into each plate. The incubation of the plates was
performed in ambient air for 48 h at 35°C. The MIC value was minimum concentration of the each extract
which inhibited growth of the organism was visually determined.

Acknowledgements: For authentication of the plant samples, the authors would like to add special thanks to the Dr.
Ahmet İçim (Department of Biology, Faculty of Arts and Science, Mustafa Kemal University (Antakya, Turkey).

Author contributions: Concept – S. G., G. K.; Design – S. G., G. K.; Supervision – S. G., G. K., M. Ü.; Resource – S. G.,

Conflict of interest statement: The authors declared no conflict of interest

REFERENCES

resistant Acinetobacter baumannii in various hospital environments: potential sources for transmission of

tested on pathogens isolated from Mastitis Milk. Molecules. 2017; 22(9): 1473-1489.

233-239.

(Kleopow) Borhidi (=Vincetoxicum rossicum (Kleopow) Barbar.) and Cynanchum louseae (L.) Kartesz&Gandhi (=

[10] Leimu R. Variation in the mating system of Vincetoxicum hirundinaria (Asclepiadaceae) in peripheral island

This is an open access article which is publicly available on our journal's website under Institutional Repository at http://dspace.marmara.edu.tr.