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ABSTRACT

Diabetes Mellitus is a life-long chronic metabolic disease, 
requiring continuous follow-up and therapy, it reduces the 
quality of life of patients with acute and chronic complications, 
mortality, and its economic burden is high. Cancer is the 
second cause of death, according to the data from World Health 
Organization. Prostate cancer is one of the most common 
cancers in the developed world and the second leading cause 
of male cancer-related death. As with the other cancer types, 
metastasis is an essential problem that we are facing and it is not 
clear whether a tumor will metastasize or not in localized state. 
It has been reported that there are high levels of voltage-gated 

sodium channels in metastatic prostate cancer cases. Cancer, 
ever growing with diabetes, is a major health problem. Studies 
have shown that diabetic patients have higher cancer rates than 
those of non-diabetics. Metformin is the drug of choice for the 
treatment of diabetes. Recently, there are studies in the literature 
regarding metformin reducing the risk of cancer besides its 
effect on diabetes This review will explain the possible role of 
the metformın on the three dimensional relationship of prostate 
cancer, diabetes and ion channels, and provide a significant 
contribution to clinical trials. 
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INTRODUCTION

Diabetes Mellitus (DM) is a metabolic and an endocrine 
disorder which occurs due to inadequate production of 
insulin by pancreas, or ineffective use of bodily insulin 
produced, progressing with the decrease of insulin-producing 
cellular counts, characterized by metabolic disorders in 
carbohydrates, proteins, and lipid metabolism. It has a life-
long character, requiring constant monitoring and treatment, 
causing a dramatic decline in the quality of life, and causing 
high rates of mortality and economic burden (1). DM affects 
almost all organs and systems with complications such as 
retinopathy, nephropathy and neuropathy, cardiovascular 
complications, and ulceration, etc. (2-4). Thus, diabetes 
includes a wide variety of heterogeneous diseases. The 
number of patients with DM is expected to increase to ca. 
438 million by 2030 and the number was 285 million in 2010 
worldwide (5). 

Cancer mechanism is a multi-step process, in which the 
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cells undergo metabolic and behavioral changes, leading 
to an excessive and untimely proliferation. These changes 
occur because of the modifications, controlling cellular 
proliferation, cellular life, relationships with the adjacent 
cells, and finally, the capacity of escaping the immune system. 
Cancer has a ranking of two for causes of death, according to 
the data provided by World Health Organization (WHO) (6, 7). 
Prostatic adenocarcinoma has a great importance for male 
morbidity and mortality observed both in our country, and 
also in the globe. It has a frequency increasing with age, and 
males in the industrialized countries encounter this disease 
at the highest frequency. It is at the second rank for cancer-
related mortality cases. According to the American Cancer 
Society, in 2014 there were over 233.000 new cases of prostate 
cancer diagnosed in the US, resulting in about 29.340 death 
(8, 9). Prostate cancer can be described as the alteration of 
the balance between cell proliferation and cell death in the 
prostate gland which causes a malign increase of the organ 
volume. Factors leading to prostatic adenocarcinoma can 
be classified as hormones, dietary measures, environmental 
factors, and genetic factors (10, 11). To put it simply, as 
with the other cancer types, the main problem of prostatic 
adenocarcinoma is metastasis, that is, formation of 
secondary tumors with the journey of cancer cells to other 
places in the body and it is almost impossible to determine 
whether the localized occurrence of the case would behave 
in a metastatic fashion. Metastatic spread of cancer cells is 
the mainly reason of death of patients, and elucidation of the 
molecular mechanisms of this process is a important focal 
point in cancer research (12). 

The transport of some molecules through the cellular 
membrane occurs through the channel proteins. Since 
they carry inorganic ions, they are also known as ion 
channels. When open, ion channels make it possible to 
passively transport through the cellular membrane for 
ions they are specific to, say, sodium, potassium, calcium, 
and chloride according to their electrochemical grading. 
Voltage-gated sodium channels (VGSC), are major ion 
channel operating in maintaining the electrical stimulation 
of the depolarization phase of the action potential, in 
which they are the sole primary responsible entity (13). In 
vitro studies have shown that the expression/activity of 
VGSC has played a role of an empowering factor in many 
cellular activities, which constitute the metastatic potential 
of prostatic adenocarcinoma. Studies have revealed that 
VGSC, especially the sub-type Nav 1.7, is a complementary 
factor of the metastatic potential of human and rat prostatic 
adenocarcinoma (14, 15). It has been observed that the 

expression/activity of VGSC is also susceptible to growth 
factors such as “epidermal growth factor” (EGF). Epidermal 
growth factor (EGF) is a low-molecular weight polypeptide. 
It binds to the EGF receptor and stimulates proliferation and 
differentiation. EGF has a regulating role on ion channels, 
which comprises the VGSCs. Human and rat prostatic cancer 
(Dunning’s model) and breast cancer were investigated for the 
effects of EGF, and EGF-VGSC upregulation (transcriptional 
and functional) was shown to increase the metastatic cellular 
behaviors (16). In rat prostatic adenocarcinoma, EGF was 
shown to be effective on MAT-Ly1u cells motions. Cellular 
invasion increases by EGF and thus, it plays an important 
role in metastatic prostatic cancer (17-19). 

A Three-Dimensional Relationship: Cancer - Diabetes - 
Ion Channels, and Metformin

Along with diabetes, cancer, which is ever growing and 
expensive, constitutes an important health problem. 
Association of diabetes and cancer has recently drawn 
much interest. According to the studies, diabetic patients 
have higher cancer rates than those of non-diabetics. 
Especially, diabetic males have a higher tendency to develop 
prostatic adenocarcinoma, as detailed in the World Health 
Organization report. The fact that diabetes has not a single 
form and it is of heterogeneous nature, progressing with 
abnormal behaviors in many metabolic parameters, people 
are commenting in diverse manners about the causes of 
its relation to cancer. The general biological mechanisms 
for the relation between diabetes mellitus and cancer are 
hyperglycemia, insulin resistance, insulin growth factor-1 
(IGF-1) increase, hyperinsulinemia, increased inflammation, 
increased oxidative stress, obesity, and damage to the DNA. 
The hyperinsulinemia, insulin resistance, and oxidative stress, 
often present in obesity, can be the mechanisms by which 
obesity induces or promotes tumorigenesis (20). In addition, 
the decisive factors for the mentioned interrelation are the 
medications of the diabetic people, dietary applications, and 
metabolism control levels. Differences in glucose metabolism 
might initiate cancer formation in all tissues and have a 
pronounced contribution to its progression (21). 

The diagnosis of prostate cancer at the localized stage and 
its metastatic potential at this period is among the key 
issues for the clinical treatment today. The metastatic role of 
voltage-gated sodium channels (VGSC) that is known as to 
play a reinforcing role in many metastatic behavior and the 
hypothesis of the inhibition of metastatic spread by blocking 
the channels have been tested in several cancer models.

Samples taken from prostatic cancer patients have shown, 
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in a immunohistochemical manner, that voltage-gated 
sodium channel protein is present in elevated amounts when 
compared to the normal prostate tissue (22).  In vitro and 
in vivo studies have indicated a high level of voltage gated 
sodium channels for metastatic prostatic adenocarcinoma 
cases. It is known that there is an activity-dependent 
regulation, which is controlled by a positive feedback 
mechanism, in the VGSC expression for Mat-LyLu cells, 
grown in vitro, and that prolonged blocking decrease the 
expression of the channel. Our research group had been 
running an in vivo project, in which we investigated the 
effect of blocking of VGSCs by tetrodotoxin (TTX) on the 
metastatic development of prostatic adenocarcinoma for 
the first time, and we have shown that TTX suppressed the 
pulmonary metastasis for 44%, and there was a significant 
prolongation in the experimental animals’ lives (23, 24).  
Prolonged TTX application to the cells has reduced the VGSC 
flow, Nav 1.7 mRNA levels, and the amount of VGSC proteins 
in the plasmic membrane. Meanwhile, when the introduction 
of sodium ions into the cell is increased, the VGSC flow is 
increased in return. Therefore, VGSCs are considered to be 
an integral part of prostatic adenocarcinomatous pathology 
(25, 17). 

Metformin is an anti-diabetic drug, constituting an example 
of a sub-biguanide class for insulin-sensitizing drugs. 
It reduces the occlusion of glucose from the intestines, 
increases the insulin-mediated glucose usage in peripheral 
tissues, reduces the fatty acid concentrations, and shows an 
anti-lipolytic effect by lessening gluconeogenesis. Metformin 
inhibits hepatic glucose production and it also prevents 
hyperglycemia. 

In the literature, many examples are available about the 
protective effects of metformin in STZ-induced diabetes (26-
28). In a study investigating the protective effect of metformin 
on hepatocytes, metformin was reported to have damage-
protective effect on the biliary acid-dependent apoptosis. 
Metformin is believed, according to literature reports, 
to have a therapeutic effect on chronic hepatic disease of 
inflammatory origin. Metformin reduces the serum ALT 
and AST levels (29). Also the effect of metformin in diabetes, 
on efforts that reduce the risk of cancer, have begun to have 
coverage in the literature. The latter is also known to play a 
significant role in prostate cancer metastasis. It is suggested 
that there is the following possible triangular relationship 
and VGSC could be responsible for the upregulation of the 
prostate cancer metastases. 

Some in vitro studies have shown the inhibitory effect of 
metformin on various cancer types (pulmonary, bladder, 
ovarian, gastric, hepatic, and prostatic cancers) (30-33). The 
antihyperglycemic effect of metformin is basically attributed 
to its AMP-mediated protein kinase activity. Although the 
exact mechanism of action for metformin has not been 
elucidated yet, it was reported that it is antiproliferative and 
of inhibitory essence in the G0/G1 cellular cycle. 

Today, bladder cancer is seen as a major problem in elderly 
male patients. A study about the effect of metformin on 
bladder cancer has provided the information that metformin 
has been administered in cases where in vivo and in vitro 
bladder cancer has been obtained with different cellular 
lines. Metformin-administered groups showed an inhibition 
of proliferation of cancer cells and colony formation has been 
declined (32). 

It has been reported that metformin inhibits the proliferation 
of human prostate cancer PC-3 cells via the down-regulation 
of insulin-like growth factor 1 receptor. The anti-tumor 
mechanisms of metformin include activation of the AMP-
activated protein kinase/mTOR pathway. Metformin is 
related to direct inhibition of insulin/insulin-like growth 
factor mediated cellular proliferation. In this study, 
metformin significantly inhibited PC-3 cell proliferation, 
migration, and invasion. Metformin is a potent inhibitor of 
the IGF receptor system and may contribute to the treatment 
of prostate cancer (34).

In vivo and in vitro experiments clearly show that the 
antidiabetic drug metformin exerts an antitumoral effect 
through a decrease of cyclin D1 level. Cyclin D1 is a key 
protein implicated in the transition of the G0/G1 phase. 
Metformin has induced to a strong reduction in cyclin 
D1 protein level. Metformin, which is given orally or 
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intraperitoneally, significantly decreases prostate tumor 
growth in a xenograft model (35).

At the same time, metformin is believed to act as a protecting 
agent on aging and cancer. In mammals, hyperglycemia and 
hyperinsulinemia are important geriatric factors. Biguanide 
compounds like metformin have long been regarded as anti-
aging therapeutic agents (36). In a study which investigated 
the effects of metformin on oral squamous carcinoma, 
both in vivo and in vitro, it was shown to inhibit the 
proliferation of the cellular lines, and most remarkably, to 
reduce the formation of colonies. The cancer-reducing and 
antitumoral properties of metformin are the factors leading 
to the consideration of it as being part of new therapeutic 
strategies. When the effects of metformin are examined in 
diabetic patients having colorectal cancer cells, it was shown 
that metformin-administered patient have higher survival 
rates of pectoral, pancreatic, and glioblastoma stem cells. 
In addition, the authors observed a decrease of metastatic 
rate in the experimental group having metformin (37, 31). 
However, further in vivo studies are needed to elucidate 
possible cellular and molecular effects of metformin in the 
triangular concept of diabetes+cancer+ion channels and for 
detecting whether or not metastatic spread is inhibited by 
blocking the channels of metformin. 

Experimental models 

Today, diagnosing several illnesses, shedding light to their 
pathogeneses, and investigation of their treatment options 
have been the subject to some studies in which experimental 
animal models provide advantages. These models allow us to 
select genetically suitable types to the pathology, work with 
many samples which are adequate for statistical evaluation, 
complete the work in a very short time with a suitable type 
of animal, study more than one risk and pathology, and try 
diagnostic, protective, and therapeutic approaches (38). In 
drug investigations, some part of in vivo experiments are 
studied on animal models representing the disease in humans. 
Although some of these models are similar to the disease in 
humans in terms of pathological properties, it cannot be 
said definitely that they represent this disease. Some models 
are performed by applying different diet to the animal or 
damaging the targeted organs with toxic substances (39).

Animal Models of Diabetes Mellitus

Experimental diabetes is one of the models utilized for this 

purpose, and it can be produced with chemicals like alloxane 
and streptozotocin (STZ), and surgical methods, diet, genetic 
modifications, and application of anti-insulin hormones in 
high doses can produce experimental diabetes as well. The 
STZ and alloxan models of chemically induced diabetes are 
commonly used. STZ and alloxane selectively damage beta 
cells, inhibits glucose-stimulated insulin release, and its high 
doses cause cellular necrosis.  

Alloxan is generally used in the insulin-dependent type 
I diabetes mellitus model. Due to its short half life, its 
intravenous (iv) use is preferred (40, 41). Although the 
diabetogenic dose of alloxan to create type I diabetes mellitus 
is accepted to be 40-45 mg/kg, Golfaman et al. reported that 
they injected a single dose 65 mg/kg alloxan through iv to 
rats, and 100% diabetes mellitus has started (42, 43). In the 
literature, alloxan is seen to be used in a broad range like 40-
100 mg/kg and through iv route (44, 45). Intraperitoneal (ip) 
and subcutaneous (sc) applications of alloxan required that 
the 2-3-fold of the dose applied through iv route must be 
applied (46, 47).

STZ is preferred more in experimental studies, due to its 
more specific beta cell cytotoxicity. STZ is frequently used to 
create insulin-dependent type I and non-insulin-dependent 
type II diabetes models. STZ impairs the oxidation of glucose 
and reduces the biosynthesis of insulin and its release. STZ is 
taken into the metabolic cycle with glucose carrier (GLUT2) 
by pancreatic beta cells. The decrease of expression for 
GLUT2 is determined to prevent the diabetogenic effect of 
STZ. STZ first causes the loss of glucose response of beta 
cells. STZ has been documented to have DNA damage in 
pancreatic beta cells. STZ-induced diabetes indicates that 
the main cause of the deaths of beta cells is the alkylation 
of DNA itself (40,1). When a diabetes model is constructed 
with STZ, a significant degenerative damage occurs in tissues 
like liver, kidneys, and testicles, according to biochemical 
and morphological studies (48-52, 26, 2, 53, 54). 

The diabetogenic dose range of STZ is not as narrow as 
alloxane. To create type I diabetes mellitus, generally the 
application of single-dose 40-60 mg/kg STZ through iv 
in mature rats is preferred, but broader doses in the range 
of 35-80 mg/kg can also be used (40, 55, 56). For STZ, 
intraperitoneal and subcutaneous uses are also mentioned 
with similar doses through iv (57, 58). STZ is used to create 
type I diabetes in mice with a dose similar for rats (59-61). 
To create type II diabetes, STZ is applied to neonatal animals 



Karabulut-Bulan
A New Insight Into Metformin Action: Diabetes, Prostate Cancer, and Ion Channels Marmara Pharm J 20: 216-223, 2016220

within the first week of birth, especially in the first and second 
days. It was found that much of the damage of pancreatic β 
cells due to STZ application is regenerated and cause a similar 
condition with type II diabetes mellitus. This method was 
first demonstrated in 1974 by Portha et al. to the neonatal rats 
by applying 100 mg/kg STZ (62). Dağıstanlı et al. (63) have 
used STZ in the 100 mg/kg concentration through i.p while 
Sinzato et al. (64) have used STZ in the same concentration, 
but through sc This method has been the mostly preferred 
chemical diabetes mellitus model to create type II diabetes 
because it offers operational ease. Similarly, it is considered 
to be the best model to reflect type II diabetes mellitus clinic 
among the other models (40) . With STZ application, type 
II diabetes mellitus could be created in an alternative way, 
which includes a high-fat (41, 65) or high-fructose (66, 67) 
diet followed by low-dose STZ injection. Srinivasan et al. (68) 
have applied 35 mg/kg STZ through i.p. after having the rats 
eat a high-fat diet for two weeks (58% fat, 25% protein and 
17% carbohydrate as the percentages of total calories) (69).

In order to determine whether the animals have been 
rendered diabetic after application of STZ, after 72 hour of 
STZ administration, tail vein blood is collected to determine 
blood glucose levels. Rats with blood glucose ≥200 mg/dL 
are considered diabetic. In addition, for determination of 
diabetes, low blood insulin level (<0.04 μg), daily elevated 
urine output (>25 mL/day), and glycoseurea (>2%) are also 
considered (38, 70). 

Animal Models of Prostate cancer 

The use of experimental model systems in cancer research have 
provided an important contribution in the understanding of 
cancer illness, the biological aspects of metastasis, as well as 
prevention of cancer and development of new therapeutic 
methods. 

Experimental model systems are used in the research on 
prostate cancer, which is a quite complicated disease. Among 
the preclinic models used in prostate cancer research, PC-
3, LNCaP, and DU-145, all of which uses in vitro cell lines 
and the xenograft models created by using these lines, as 
well as animal models like rodents such as mouse and rat 
and dogs and model systems developed with transgenic 
techniques (71-73).  Animal models, particularly rat models, 
play an important role in the study of the etiology, prevention 
and treatment of prostate cancer. Four model systems for 
prostate cancer research in rats were established. These 

are Dunning, Noble, ACI and Pollard tumor models. The 
prostatic adenocarcinoma model in Copenhagen-type rats is 
of powerful metastatic nature, obtained with subcutaneous 
injection of rat Mat-LyLu cells, which is classified as a Dunning 
adenocarcinoma model. The designation MATLyLu is an 
abbreviation for Metastatic Anaplastic Tumor Metastasizing 
to Lymph node and Lungs (74). Dunning’s model is one of 
the experimental prostatic adenocarcinoma model, arising 
first in 1961 by W. F. Dunning, appearing as a spontaneously 
occurring in the dorsal prostate of an old Copenhagen type 
rat, having good distinctive properties, growing slowly, and 
is androgen-selective (72). In the beginning, this model was 
used in the investigations of carcinogenesis from a hormonal 
perspective, but now it is still practiced as a useful model for 
investigations of androgen-independent growth of prostatic 
adenocarcinoma cells and the molecular basis of metastases. 

Though Dunning’s rat prostatic cancer model is one of the 
first ones that was accepted, it is still widely used, having 
many subcellular strains, grown both in vivo and in vitro 
(75-78). Prostatic cancer is formed by the inoculation of 
highly metastatic Mat-LyLu cells from these strains into 
Copenhagen rats and metastasizes to the lungs and the 
lymphatic system (76, 79, 80). 

CONCLUSION 

The role metformin in diabetes has been studied in detail 
and additionally there are some studies linking diabetes-
metformin-insulin resistance-aging. On the other hand, effects 
of metformin in experimental cancer and diabetes+cancer 
models in vivo have not been investigated. This review 
highlights the potential therapeutic effect of metformin in 
prostate cancer and diabetes model. We designed a study with 
regard to this issue. Our planned study and the novel in vivo 
model should be important for improving clinical insight. 
The study we are planning is constructed upon meeting the 
requirement of providing early diagnosis and determining 
the metastatic potential of prostatic adenocarcinoma, and 
best exemplified by the phrase “VGSCs have an empowering 
effect of the metastatic potential of prostatic adenocarcinoma 
and metastatic spreading can be suppressed by blocking the 
channels”.  In our study, the triangular concept of diabetes, 
prostatic adenocarcinoma, and ion channels have the 
interconnections first investigated using in vivo methods and 
the overall effect and therapeutic potential of metformin will 
be described. 
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