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ABSTRACT: The aim of the present study was to investigate total phenolic content and biological effects of methanol 
extracts from Cornus sanguinea L. leaves (LME) and fruits (FME).  Total phenolic contents, COX-1/COX-2, α-
glucosidase, AChE, tyrosinase inhibitory and DPPH radical scavenging effects of both extracts were investigated by 
using spectrophotometric methods. The total phenolic contents of LME and FME were determined as 191.14 ± 4.84 
and 31.51 ± 2.68 mg GAE/g dry weight, respectively. LME inhibited COX-1 enzyme 70.71 ± 1.88% and 79.38 ± 0.92% 
at 50 and 100 µg/mL. LME had higher COX-1 and COX-2 inhibitory effects than that of FME. LME inhibited α-
glucosidase stronger than positive control, acarbose. On the other hand, both extracts showed lower AChE inhibition 
actions compared to positive control, galantamine. Moreover, LME had higher tyrosinase inhibitory effect than FME. 
Both extracts scavenged DPPH radical in a concentration-dependent manner. Also, LME had stronger scavenging 
effect than that of FME. To our knowledge, current work is the first report on tyrosinase, AChE, as well as COX-1 
inhibitory properties of C. sanguinea.  These results suggested that LME of C. sanguinea have a promising potential for 
the treatment of several disorders but further studies are needed to support the this assumption. 
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 1.  INTRODUCTION 

The species of Cornus have significant biological effects due to the presence of ascorbic acid, phenolic 
compounds, flavonoids, anthocyanins [1]. Their leaves and fruits have antioxidant, antimicrobial, anti-
inflammatory, cytoprotective, antidiabetic effects [2]. The genus Cornus is represented by two species in 
Turkey. Cornus sanguinea L. (Cornaceae), is a small tree with purplish-black drupe fruits [3]. An infusion 
prepared from C. sanguinea barks is used as an astringent and it is applied topically to sore eyes in Serbia [4]. 
C. sanguninea fruits are consumed as food and for medicinal purposes in Turkey. They are eaten as jam and 
also are used the treatment of diarrhea [5,6]. Fruits and leaves of the plant are rich in phenolic compounds  
[2,7]. Presence of some quercetin derivatives, including quercetin-3-O-glucuronide, quercetin-3-O-
galactoside, quercetin-3-O-glucoside, quercetin-3-O-rhamnoside and quercetin-3-O-rutinoside in fruits 
determined by LC-MS/MS [8]. An ethanol extract of leaves, flowers and stems (2:1:1) of C. sanguinea 
inhibited methicillin resistant Staphylococcus aureus and Candida albicans with MIC values of 8 and 12.6 
mg/ml [9].  

Inflammation is a basic defense mechanism against injury or infection and characterized by many 
symptoms such as redness, heat, pain, and swelling  [10]. The main metabolic process in the inflammatory is 
the arachidonic acid (AA) pathway. In this pathway, the cyclooxygenase (COX) enzymes form 
prostaglandins which are responsible for the pain and associated with process of inflammation [11]. Its 
processes are involved in severe degenerative disorders including rheumatoid arthritis, cardiovascular 
disease, asthma, diabetes, epilepsy, Alzheimer’s disease, neurotoxicity etc. [12].  

Diabetes mellitus (DM), is one of the degenerative diseases, cause to severe complications such as 
diabetic nephropathy, neuropathy, and cardiovascular diseases etc. α-Glucosidase enzyme is a key role for 
the hydrolysis and absorption of carbohydrates [13]. Its inhibitors are used for the treatment of DM since 
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they regulate postprandial blood glucose and insulin levels [14]. In recent years, researchers have been 
looking for new, natural, and with less side effects α-glucosidase inhibitors against DM due to the 
gastrointestinal side effects of drugs used in the clinic. 

Alzheimer disease (AD) is one of the disorders that cause decreased cognitive functions and memory 
loss [15]. Acetylcholinesterase (AChE) catalyzes the hydrolysis of the neurotransmitter acetylcholine to 
choline and acetic acid [16]. Improving cholinergic function by inhibition of AChE is an important method 
for the symptomatic treatment of AD. Cholinesterase inhibitors increase cholinergic transmission by 
inhibiting the AChE [17]. 

Tyrosinase is widely found in plant, animals, fungi and bacteria and catalyzes by oxidizing 
monophenols to diphenols and diphenols to quinones and finally quinones generate melanine which 
prevent ultraviolet damage from sunlight on the skin [18]. However, the excessive generation of melanin 
triggers several disorders such as melanoma, age spots, neurodegenerative disesases etc [19]. In addition, 
tyrosinase causes degradation of nutritional values due to browning problems for fruits and vegetables [19]. 
So, tyrosinase inhibitors have been extremely interesting in the cosmetic and pharmaceutical as well as food 
industry in recent years. 

The aim of present study was to investigate total phenolic content and biological effects of methanol 
extracts from C. sanguinea leaves (LME) and fruits (FME). 

2. RESULTS  

2.1. Estimation of total phenolic content  

The total phenolic contents of LME and FME were determined as 191.14 ± 4.84 mg GAE/g dry weight, 
31.51 ± 2.68 mg GAE/g dry weight, respectively.  

2.2. COX-1 and COX-2 inhibitory effects of LME and FME 

The in vitro COX-1 and COX-2 inhibitory effects of LME and FME were presented in Figures 1 and 2. 
The obtained results were expressed as percent of inhibition (%) and IC50 values. As shown in Figure 1, LME 
inhibited COX-1 enzyme with 45.31 ± 1.49%, 62.80 ± 2.53%, 70.71 ± 1.88% and 79.38 ± 0.92% at 12.5, 25, 50 
and 100 µg/ml. It showed significant COX-1 inhibitory effect when compared to diclofenac at 25 and 100 
µg/ml (p < 0.01). In addition, the IC50 value of LME (13.60 ± 2.04 µg/ml) was lower than diclofenac (17.55 ± 
0.91 µg/ml). On the other hand, FME had low inhibitory properties against COX-1. In COX-2 inhibition 
assay, At 100 µg/ml, LME displayed significant inhibition as compared to celecoxib (p < 0.001). The IC50 
value of LME was determined as 11.39 ± 2.39 µg/ml on COX-2.  

 

Figure 1. Inhibitory effects (%) of LME and FME on COX-1. **p < 0.01 comparing positive control at same 
concentrations. 
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Figure 2. Inhibitory effects (%) of LME and FME on COX-2. ***p < 0.001 comparing positive control at 
same concentrations. 

2.3. α-Glucosidase inhibitory effects of LME and FME 

The in vitro α-glucosidase inhibitory properties of the extracts were given in Table 1. The obtained 
results were expressed as percent inhibition (%) and IC50 values. LME inhibited α-glucosidase in a 
concentration-dependent manner as shown in Table 1. At 25, 50 and 100 µg/ml, LME had significant 
inhibition actions when compared to acarbose (p < 0.001). The IC50 value of LME was determined as 19.14 ± 
0.21 µg/ml. On the other hand, FME did not show any inhibitory action at studied concentrations.  

Table 1. Inhibitory effects (%) of LME and FME on α-glucosidase. 

 12.5 µg/ml 25 µg/ml 50 µg/ml 100 µg/ml IC50 µg/ml 

LME 23.57 ± 4.24 74.81 ± 5.03*** 86.09 ± 0.45*** 88.76 ± 0.06*** 19.14 ± 0.21 

FME nd nd nd nd nd 

Acarbose 20.64 ± 2.53 39.78 ± 0.53 47.85 ± 1.41 62.85 ± 1.41 51.24 ± 1.27 

***p < 0.001 comparing positive control at same concentrations.  
nd: not determined. 

2.4. AChE inhibitory effects of LME and FME 

The in vitro AChE inhibitory potentials of the extracts were given in Table 2 and the obtained results 
were expressed as percent inhibition (%) and IC50 values. As given in Table 2, LME showed inhibitory effects 
on AChE with 16.84 ± 2.55%, 25.54 ± 1.47%, 36.71 ± 0.55% and 50.89 ± 1.49% at 12.5, 25, 50 and 100 µg/ml. 
While FME did not display inhibition on AChE at 12.5 and 25 µg/ml, it showed inhibitory effects with 11.59 
± 1.51% and 24.58 ± 1.49% at 50 and 100 µg/ml. The IC50 values of LME and FME were 93.64 ± 2.98 and > 100 
µg/ml, respectively. The results showed that both extracts showed lower inhibitory effects when compared 
to galantamine which used as a positive control. 

Table 2. Inhibitory effects (%) of LME and FME against AChE. 

 12.5 µg/ml 25 µg/ml 50 µg/ml 100 µg/ml IC50 µg/ml 

LME 16.84 ± 2.55 25.54 ± 1.47 36.71 ± 0.55 50.89 ± 1.49 93.64 ± 2.98 

FME nd nd 11.59 ± 1.51 24.58 ± 1.49 > 100 

Galantamine 76.52 ± 2.12 85.44 ± 1.59 90.96 ± 0.34 92.46 ± 1.99 < 12.50 

nd: not determined 
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2.5. Tyrosinase inhibitory effects of LME and FME 

The in vitro tyrosinase inhibitory effects of the both extracts were presented in Figure 3 and the 
obtained results were expressed as percent of inhibition (%) and IC50 values. LME had higher inhibition 
action than that of FME but kojic acid showed stronger inhibitory effect than both extracts at studied 
concentrations. At 12.5, 25, 50 and 100 µg/ml, both extracts inhibited tyrosinase with 12.97 ± 0.61%, 36.42 ± 
0.80%, 60.00 ± 2.51% and 66.49 ± 0.38% for LME and 9.23 ± 1.72%, 23.95 ± 0.42%, 49.50 ± 2.81% and 82.49 ± 
1.32% for FME, respectively. The IC50 values of LME and FME were 44.45 ± 3.31 and 65.06 ± 2.41 µg/ml, 
respectively. 

 

Figure 3. Inhibitory effects (%) of LME and FME on tyrosinase. 

2.6. DPPH radical scavenging effects of LME and FME 

The DPPH radical scavenging effects of the both extracts were shown in Table 3. The obtained results 
were expressed as percent of inhibition (%) and IC50 values. Both extracts scavenged DPPH radical in a 
concentration-dependent manner as presented in Table 3. At 50 and 100 µg/ml, LME had remarkable radical 
scavenging actions with 75.76 ± 2.56% and 92.34 ± 0.87%, respectively. The IC50 values of LME was 27.27 
±1.30 µg/ml. In addition, LME had stronger scavenging effects that of FME at studied concentrations. 

Table 3. DPPH radical scavenging effects (%) of LME and FME. 

 12.5 µg/ml 25 µg/ml 50 µg/ml 100 µg/ml IC50 µg/ml 

LME 23.52 ± 0.22 44.14 ± 3.10 75.76 ± 2.56 92.34 ± 0.87 27.27 ± 1.30 

FME 3.79 ± 2.57 8.05 ± 4.00 16.10 ± 3.71 29.51 ± 3.32 > 100 

Gallic acid 89.78 ± 0.64 91.76 ± 0.38 92.19 ± 0.35 92.92 ± 0.74 < 12.50 

3. DISCUSSION 

Plants and their extracts have been used for treatment of many disorders. Stankovic and Topuzovic 
reported that the species of the genus Cornus are used in veterinary medicine, pharmacy, and traditional 
medicine since they have rich in phenolic compounds and show various biological activities such as 
antioxidant, anti-inflammatory, cytoprotective, and antidiabetic etc. [2]. To the best of our knowledge, 
tyrosinase, AChE, as weel as COX-1 inhibitory properties of the plant investigated for the first time by 
current work. In this study, the total phenolic contents of LME and FME were found to be 191.14 ± 4.84 mg 
GAE/g dry weight, 31.51 ± 2.68 mg GAE/g dry weight, respectively. LME had higher total phenolic content 
than that of FME about six-fold. Stankovic and Topuzovic reported that the total phenolic and flavonoid 
contents in the methanol extracts of C. sanguinea leaves and fruits were determined as 205.74 ± 0.49 mg 
GA/g extract and 34.19 ± 0.25 mg GA/g extract, 23.24 ± 0.16 mg rutin/g extract, 14.40 ± 0.09 mg rutin/g 
extract, respectively [2]. Their results showed that C. sanguniea leaves contain more phenolics and flavonoids 
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compared to the fruits. Therefore, it is thought that LME showed higher activity than FME for in vitro 
biological activity studies that we used. In this study, we investigated in vitro COX-1 and COX-2 inhibitory 
effects of LME and FME by using spectrophotometric method. The obtained results demonstrated that LME 
had higher COX-1 and COX-2 inhibitory actions than FME and showed significant COX-1 inhibitory effect 
when compared to diclofenac at 25 and 100 µg/ml (p < 0.01). For COX-2, LME showed significant inhibition 
as compared to celecoxib at 100 µg/ml (p < 0.001). Popovic et al. reported that methanol extract of C. 
sanguinea fresh fruit were analyzed using LC-MS/MS and determined contents of neochlorogenic acid, 
quercetin-3-O-glucuronide, quercetin-3-O-galactoside, quercetin-3-O-glucoside, quercetin-3-O-rhamnoside, 
and quercetin-3-O-rutinoside [20]. Kim et al. reported that neochlorogenic acid, a natural polyphenolic 
compound found in dried fruits, suppresses COX-2 protein expression on murine microglial BV2 cells [21]. 
Mandour et al. reported that quercetin-3-O-glucuronide inhibited COX-1 and COX-2 enyzmes with 37.60% 
and 60.00% at 25 μg/ml and quercetin-3-O-galactoside showed COX-1 and COX-2 with 39.20% and 60.70% 
at same concentration [22]. In another study, Comolada et al. reported that quercetin-3-O-rhamnoside 
showed benefical effects of in vivo model of intestinal inflammation [23]. Ning et al. reported that quercetin-
3-O-glucuronide showed inhibitory effect against α-glucosidase enzyme [24].  As shown in Table 1, LME 
inhibited α-glucosidase in a concentration-dependent manner and it had significant inhibitory effect 
compared to acarbose at 25, 50 and 100 µg/ml (p < 0.001). On the other hand, FME displayed no α-
glucosidase inhibitory effects at studied concentrations. Suprisingly, α-glucosidase activity increased in the 
presence of FME at 12.5, 25, 50 and 100 µg/ml. On the contrary of our work, Truba et al. reported that 
aqueous-ethanolic extract of C. sanguinea fruit exhibited inhibitory effect against α-glucosidase enzyme and 
the IC50 value of it was determined as 70.07 ± 16.62 µg/ml [25]. In this study, the results of in vitro AChE 
inhibitory potentials of the extracts showed that LME showed higher inhibitory effects that of FME but it 
had lower inhibitory action than galantamine. To the best of our knowledge, there was not any report on the 
cholinesterase inhibitory effect of C. sanguinea but there are few studies about the same activitiy of genus 
Cornus so far. Bhakta et al. isolated seven compounds from the fruits of Cornus officinalis, cornuside, 1,2,3-tri-
O-galloyl-β-D-glucose, 1,2,3,6-tetra-O-galloyl-β-D-glucose, tellimagradin I, tellimagrandin II, and 
isoterchebin and investigated AChE inhibitory effects of them using Ellman’s method [26]. The IC50 values of 
cornuside, 1,2,3-tri-O-galloyl-β-D-glucose, 1,2,3,6-tetra-O-galloyl-β-D-glucose, tellimagradin I, tellimagrandin 
II, and isoterchebin were calculated as >100 µM, >100 µM, 85.64 ± 0.03 µM, 87.52 ± 0.32 µM, 11.86 ± 0.56 µM, 
47.55 ± 0.54 µM, respectively. In addition, tellimagradin I, tellimagrandin II, and isoterchebin inhibited AChE 
via mixed, competitive, and mixed inhibitory type [26]. The tyrosinase inhibitory effects of the both extracts 
were presented in Figure 3 and LME had higher inhibitory action that of FME but kojic acid showed stronger 
inhibitory effects than both extracts. These obtained results showed compatibility with other inhibitory 
activities. An et al. reported the tyrosinase effects of methanol extract of Cornus officinalis fruits on melan-a 
cells. Their results showed that methanol extract upregulated tyrosinase activitiy on this cell line [27]. DPPH 
radical scavenging assay is the common technique to evaluate antioxidant effect due to being a cost-effective, 
fast and sensitive method [28]. The obtained results displayed that both extracts scavenged DPPH radical in 
a concentration-dependent manner. LME had remarkable radical scavenging action at 50 and 100 µg/ml and 
it had stronger scavenging effect than FME. Stankovic and Topuzovic reported that IC50 values of DPPH 
radical scavenging effects of methanol extracts of C. sanguinea leaves and fruits collected from Serbia were 
19.84 ± 0.11 and 358.59 ± 1.14 µg/ml. Their results showed that leaves have higher antioxidant activity when 
compared to fruits [2]. Yousfbeyk et al. reported that IC50 value of methanol (1%HCl) extract from C. 
sanguinea in Iran was found to be 90.43 µg/ml [7]. The results showed that enzyme inhibitory and 
antioxidant effects depend on the polarity of solvent, plant part, extraction method etc. However, our results 
were consistent with data given in literature. 

4. CONCLUSION 

In this study, we investigated total phenolic content, COX-1/COX-2, α-glucosidase, AChE, tyrosinase 
inhibitory and DPPH radical scavenging effects of LME and FME obtained C. sanguinea from Turkey. The 
total phenolic contents of LME and FME were found to be 191.14 ± 4.84 and 31.51 ± 2.68 mg GAE/g dry 
weight, respectively. LME had higher total phenolic content than that of FME about six-fold. LME inhibited 
COX-1 enzyme with 70.71 ± 1.88% and 79.38 ± 0.92% at 50 and 100 µg/ml. It showed significant COX-1 
inhibitory effect when compared to diclofenac at 25 and 100 µg/ml. LME had higher COX-2 inhibitory 
effects than that of FME. LME inhibited α-glucosidase in a concentration-dependent manner and it had 
significant inhibition actions as compared to acarbose. Both extracts showed lower AChE inhibition effects as 
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compared to galantamine. In tyrosinase inhibition assay, LME had higher inhibition action than that of FME 
but kojic acid showed stronger inhibitory effects than both extracts. Both extracts scavenged DPPH radical in 
a concentration-dependent manner. In addition, LME had stronger scavenging effects that of FME at studied 
concentrations. These results suggested that LME of C. sanguinea have a promising potential for the 
treatment of several degenerative disorders such as including rheumatoid arthritis, diabetes, Alzheimer’s 
disease, and Parkinson’s disease etc but in vivo researchs are needed to support the therapeutic actions. 

5. MATERIALS AND METHODS 

5.1. Plant material  

C. sanguinea was collected from Çamiçi plateau, Niksar, Tokat (40°, 38', 52'' N, 36°, 50', 55'' E)  on 28 
Agust 2019. The plant material was collected and identified by Assoc. Prof. Dr. Didem Şöhretoğlu. A 
voucher specimen was deposited in Herbaryum of Hacettepe University, Faculty of Pharmacy (HUEF 
19072). 

5.2. Extraction 

The shade-dried leaves (3 g) were macerated with MeOH (50 ml) at room temperature for overnight 
and then extracted at 40 °C for 8 h. The same process repeated 3 times, and the extracts were combined. The 
concentrated MeOH extract was suspended in H2O and lyophilized (0.38 g). Fruits are kept -20 °C then the 
same extraction procedure was applied to 3 g fruits. After this procedure, 0.65 g extract was obtained. 

5.3. Estimation of total phenolic content  

The total phenolic content of LME and FME was determined by using the Folin-Ciocalteu reagent 
according to method by Kahkönen [29]. The extracts and diluted Folin-Ciocalteu reagent (Sigma-Aldrich, 
47641), were placed in each well of a 96 well plate. After then sodium carbonate was added. The mixtures 
were incubated for 30 min in the dark. Afterwards, the absorbance was measured at 760 nm. The total 
phenolic contents of LME and FME were expressed as mg gallic acid equivalents (GAE) per g of dry weight 
of extract. 

5.4. Biological studies 

5.4.1. COX-1 and COX-2 inhibition assay 

The COX-1 and COX-2 inhibitory effects of LME and FME were carried out by using 
spectrophotometric methods [30]. Diclofenac and celecoxib were used positive controls for COX-1 and COX-
2, methanol (%1) as blank. COX-1 from sheep (Sigma-Aldrich, C0733) and COX-2 from human (Sigma-
Aldrich, C0858) were treated the extracts (12.5-100 µg/ml) in 96-well plate and incubated for 5 min. After 
incubation, endpoint assay mix (Tris.Cl pH 8.1 (1 mM), hemin (100 µM), N,N,N′,N′-tetramethyl-p-
phenylenediamine (17 mM), arachidonic acid (10 mM)) (Sigma-Aldrich) was added and reaction mixture 
was incubated for 15 min. The absorbance was measured at 611 nm using microplate reader. The COX-1 and 
COX-2 inhibition (%) and IC50 values (µg/ml) of samples was determined as follows [Eq. 1]:  

Inhibition (%)=[((Acontrol )- Aextract))/Acontrol]×100      [Eq. 1] 

5.4.2. α-Glucosidase inhibition assay 

The α-glucosidase inhibitory effect was investigated according to our previous study with minor 
modifications [31]. Acarbose was used as a positive control, whereas methanol (1%) was used as blank. α-
Glucosidase from Saccharomyces cerevisiae (Sigma-Aldrich, G5003) was treated with the extracts (12.5-100 
µg/ml) in 96-well plate and incubated for 10 min. After incubation, p-nitrophenyl-α-glucopyranoside (5 
mM) (Sigma-Aldrich, N1377) was added to reaction mixture and incubated for 15 min at room temperature. 
The absorbance was measured at 405 nm using microplate reader. The α-glucosidase inhibition (%) and IC50 
values (µg/ml) of samples was determined by using equation mentioned above. 

5.4.3. AChE inhibition assay 

The inhibitory properties of the extracts on AChE were determined according to our previous study 
with minor modifications [32]. Galantamine was used as a positive control, whereas methanol (1%) was used 
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as blank. AChE from Electrophorus electricus (Sigma-Aldrich, C3389) were treated with the extracts (12.5-
100 µg/ml) in 96-well plate and incubated for 10 min. After incubation, Tris.Cl buffer pH 8 (50 mM), 5,5-
dithio-bis(2-nitrobenzoic)acid (3 mM) (Sigma-Aldrich, D8130) were added to mixtures and incubated for 15 
min at room temperature. After incubation, acetylthiocholine iodide (Sigma-Aldrich, A5751) was added as a 
substrate to start enzymatic reaction. The absorbance was measured at 412 nm using microplate reader. The 
AChE inhibition (%) and IC50 values (µg/ml) of samples was determined by using equation mentioned 
above. 

5.4.4. Tyrosinase inhibition assay 

The inhibitory properties of the extracts on tyrosinase were investigated according to our previous 
study with minor modifications [19]. Kojic acid was used as a positive control and methanol (1%) was used 
as blank. Tyrosinase from mushroom (Sigma-Aldrich, T3824) in phosphate buffer pH 6.8 (100 mM) were 
treated with the extracts (12.5-100 µg/ml) in 96-well plate and incubated for 10 min. Afterwards, 3,4-
dihydroxy-L-phenylalanine (3 mM) (Sigma-Aldrich, D9628) was added to mixtures and incubated for 15 min 
at room temperature. The absorbance was measured at 475 nm using microplate reader. The tyrosinase 
inhibition (%) and IC50 values (µg/ml) of samples was determined by using equation mentioned above. 

5.4.5. 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay  

The DPPH radical scavenging effects of the extracts were carried out according to our previous study 
with slight modification [33]. Gallic acid was used as a positive control and methanol (1%) was used as 
blank. DPPH solution (0.2 mM) (Sigma-Aldrich, D9132) was added the extracts (12.5-100 µg/ml) in 96-well 
plate and incubated for 30 min. The absorbance was measured at 517 nm using microplate reader. The DPPH 
radical scavenging effects (%) and IC50 values (µg/ml) of samples were determined by using equation 
mentioned above. 

5.5. Statistical analysis  

The data were analyzed using GraphPad Prism 5.0 and data were expressed as the mean ± SD. 
Statistical analysis was investigated with two-way analysis of variance (ANOVA) followed by Bonferroni 
tests. 
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