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ABSTRACT: Niacin or nicotinic acid therapy leads to reduction of the level of Low-density Lipoprotein cholesterol 
(20-40%) with significant elevation of High-Density Lipopreoin cholesterol level (20-35%). From research, it was said 
that Nicotinic acid might exert its positive action by activating the G-protein-coupled receptor (GPCR) which is found 
on adipocytes. GPR109A (family of GPCR) receptor was important for nicotinic acid (niacin) for its anti-lipolytic 
effects. As GPR109A is a targeted receptor for the treatment of dyslipidemia, its structural analysis needs to be 
elucidated. But the Protein 3D structure of target was not available at Protein Data Bank (PDB), so we have generated 
its structure through homology modeling and validation was carried out. Screening of top lead molecules with the 
help of various computational approaches like molecular-docking and molecular dynamic (MD) simulations studies 
with different online tools were carried out. The docking results showed that the lead compound 2B [(R)-methyl 2-(2-
(1H-indol-3-yl) acetamido)-3-(1H-indol-3-yl) propionate] revealed significant binding energy value (-30.54 kcal/mol) 
as that with the nicotinic acid which is a standard drug (-17.68 kcal/mol). In addition to that, Molecular-Dynamic 
(MD) simulations analysis proved that compound 2B has lesser variations throughout the simulation period as 
represented by the root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) graphs. Current in 
silico study describes the modeling of novel heterocyclic compounds as antihyperlipidemic drugs for the treatment of 
dyslipidemia. This study also describes a deeper idea about the structural information of the lead compound 2B and 
its entire molecular interactions against GPCR109A and provides a hypothetical guideline to utilize this compound as 
an antihyperlipidemic for the treatment of dyslipidemia. 

KEYWORDS: G-protein coupled receptor (GPCR); homology modeling; antihyperlipidemic drugs; nicotinic acid; 
molecular docking and molecular dynamic simulations.   

1.  INTRODUCTION 

Nicotinic acid (Niacin), the water-soluble vitamin helps to reduce plasma lipid levels of total 
cholesterol (TC), free fatty acids (FFA), triglycerides (TG) when administered to humans beings [1, 2]. 
Nicotinic acid robustly increases high-density lipoprotein levels compared to other anti-hyperlipidemic 
drugs [3]. How nicotinic acid acts by lowering lipid levels in the body, this metabolism is still not clear. 
Harmful side effects shown by nicotinic acid such as flushing (facial reddening), reduced glucose tolerance 
or gastral intestinal effects decrease patient compliance [4]. Nicotinic acid plays an important role by 
inhibiting fat cell lipolysis by the activation of a G protein-coupled receptor (GPCR) and successive 
inhibition of cAMP configuration [5, 6] and [7]. In 2003, scientists identified three G Protein-coupled 
receptors (GPR109A, GPR81, and GPR109B) that binds to nicotinic acid with projected similarity [8-10]. The 
GPR109A receptor, couples to G protein of Gi family, which is expressed mainly in adipocytes and immune 
cells. The receptors GPR109A and GPR81 both exist in humans as well as in rodent species [11]. The anti-
hyperlipidemic effects of nicotinic acid cause a reduction in FFA and TG, but in mice lacking PUMA-G, anti-
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lipolytic effects are not observed [9]. Thus, it was proved that GPR109A is the receptor, which brings about 
the anti-lipolytic effects of nicotinic acid. 

In earlier studies, Tanura et al. generated a structural homology model for receptor GPR109 A/ B, they 
used the X-ray structure of Rhodopsin [12, 13] from protein data bank (PDB id: 1HZX) [14] as a template. 
The validation of the 3D model of the GPR109A receptor was done by checking the quality as well as the 
stability of the model. The model was validated by analyzing the stereochemical quality of protein structure 
by PROCHECK [15] and the stability was confirmed by molecular dynamics (MD) run (root mean square 
deviation (RMSD), 1.7 Å). In GPCR for small ligands, the binding site was not formed by transmembrane 
helices (TMH) 3, 5 and 6 but the binding site was formed by transmembrane helices 2, 3 and 7[13]. The acidic 
group of nicotinic acid interacts with the basic amino acid Arg111 at TMH3, whereas the pyridine ring of 
nicotinic acid is fixed between Trp91 at the junction TMH2/ECL1, Phe276, and Tyr284 at TMH7. The 
pyridine nitrogen is also bound to Ser178 at ECL2 via H bond. Asn86 (TMH2) restrains the orientation of 
Trp91 by hydrogen bond, and Phe180 (ECL2) restrains this orientation of Phe276 by aromatic interactions 
leading to an appropriate and inflexible binding cleft. 

Through the Gi -protein-mediated inhibition of adenylyl cyclase; the nicotinic acid receptor is 
activated in adipocytes, which results in the reduction of TAG to FFAs. The anti-lipolytic effects of nicotinic 
acid that are essential for reducing FFA levels and subsequent decrease in TAG plasma levels are canceled, 
in mice lacking PUMA–G [9]. Mainly nicotinic acid (NA) increases HDL levels but it is still not clearly 
understood how nicotinic acid increases HDL. From several studies, it was clear that nicotinic acid decreases 
the catabolism of Apo A-I-containing lipoprotein particles [16, 3]. The main side effect of nicotinic acid 
flushing, which was observed at very small doses (50-100mg per os) of nicotinic acid and reddening occurs 
mainly in the upper body, neck, and face [17]. The NSAID’S can reduce initial flushing whereas they do not 
alter the effects of nicotinic acid on lipid levels. From recent studies, it is clear that the cutaneous flushing 
effect is mediated by GPR109A. Thus in PUMA–G deficient mice nicotinic acid does not induce flushing, 
although this response can be restored by transplanting wild type bone marrow onto irradiated GPR109A 
deficient animals [18]. 

In this article, we have designed a new GPR109A receptor by homology modeling approach and 
different agonists of the GPR109A receptor. Nicotinic acid and its 80 derivatives were docked with modeled 
GPR109A receptor, by using FlexX software, which is used for batch docking. The docking result shows that 
binding energy for all the compounds was less than nicotinic acid, which is a natural agonist. The best 6 
compounds were selected for further docking analysis. 

2. RESULTS AND DISCUSSION 

2.1. Model validation 

The model generated by SWISS-MODEL [19] for GPR109A was subjected to validation using 
PROCHECK [20], PROSA Web server [21] and SAVES [22]. The template and model alignment was done 
and the alignment score was 0.012. The root means square deviation (RMSD) was 0.545 Å (Figure 1). Protein 
and ligands were submitted to PDBsum [23] and Ramachandran plots were generated. The model was 
validated based on PDBsum generated Ramachandran Plot statistics (Table 1). Figure 2 shows that the 
generated model, the one with the maximum number of residues in the allowed region (yellow) and the 
lowest number of residues in the disallowed region (Red) was considered as the appropriate model for 
GPR109A, for further analysis. The PDBsum generated Ramachandran plot for the selected model showed 
that number of residues present in favored region 245 (90.7%), number of residues present in allowed region 
20 (7.4%) and number of Residues in generously allowed regions 3 (1.1%) and Residues in disallowed 
regions 02 (0.7%). Residues in disallowed regions are Phe25 (A) and Pro302 (A). 

The Ramachandran plot shows the phi-psi torsion angles for all residues in the structure (except those 
at the chain termini). Glycine residues are separately identified by triangles as these are not restricted to the 
regions of the plot appropriate to the other side chain types. The shading on the plot represents the different 
regions as shown in Figure 2, the darkest areas in red correspond to the "core" regions showing the most 
favorable combinations of phi-psi values. Ideally, one would hope to have over 90% of the residues in these 
"core" regions. The percentage of residues in the "core" regions is one of the better guides to stereochemical 
quality. PROSA analysis of the selected model revealed that the model has structures resembling native 
structures with a Z –score of -3.95. Whereas for SAVES–VCLA-DOE LAB with overall quality factor 91.87. 
This confirms that the model generated by the SWISS model is highly reliable and can be considered for 
further studies. 
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Figure 1. Model Template Alignment: (Superimposition of GPR109A with the template (PDB id 4XNW) by 
maestro and  RMSD is 0.545 Å. The template structure is shown in Red and target with Green colour. 0.012% of 
amino acids deviated with the template structure. 

Table 1. Ramachandran plot statistics. 

Residual Properties 
Number of  
Residues 

Total% of 
Residues 

Residues in most favoured regions [A,B,L] 245 90.7 
Residues in additional allowed regions [a,b,l,p]  20 7.4 
Residues in generously allowed regions [ a, b, l, p]  3 1.1 
Residues in disallowed regions 2 0.7 
Number of end-residues (excl. Gly and Pro)  3 1.1 
Number of glycine residues (shown as triangles) 12 4.4 
Number of proline residues  11 4.0 
Number of non-glycine and non-proline residues 270 100.0 

 

Figure 2. Model validation by Phi–Psi plot showing that the Phi–Psi plot cluster of the model is of high quality 
with a minimal outlier. (Red: Favored Region, Yellow: Allowed Region) 
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2.2. Secondary structure analysis 

The secondary structure characterization of the GPR109A model was done through GPCRdb [24] 
which provides information on the number of helices and loops. Figure 3(a) shows the secondary structure 
of GPR109A, comprises of 7 helices, 3 intracellular loops, 3 extracellular loops, N-terminal and C-terminal. 
GPR109A color model (Figure 3(a)) N-Terminal starts at Met1 to Asp24 (Red), TM1 contains amino acids 
from Phe25-His55 (Green), TM2 contains Lys60-Arg90 amino acids (Blue), TM3 contains Gly96–His131 
amino acids (violet), TM4 contains Ser140 to Lys166 (Cyan) amino acids, TM5 contains Phe180 – Gln217 
(yellow) amino acids, TM6 contains Lys225–Thr260 (Grey) amino acids, and TM7 contains Asn265-Ser297 
(Pink dark Salmon) amino acids. H8 lysozyme was removed, ICL1 (Leu56-Trp59), ICL2 (Pro132-Leu139), 
ICL3 (Aer218-Ala224) (magenta), ECL1 (Trp91-Phe95), ECL2 (Met167-Ser179), ECL3 (Ser261-Gln264) (Red 
Orange), whereas C-terminal contains Ser298-Leu308 (Orange) amino acids. The top view of the GPR109A 
receptor model is shown in Figure 3(b). 

 

Figure 3. a) GPR109A modeled receptor shown in a different color with transmembrane helices. (b) Top 
view of GPR109A modeled receptor. 

2.3. Active site analysis 

Once the final model was built and validated for GPR109A the possible binding sites were identified. From the 

PDBsum entries [24] and literature review [13] of the templates chosen for GPR109A, their binding sites were 

analyzed. Figure 4(a) shows active site residues that are Ser181, Ser178, Phe180, Ser179, Phe276, Leu176, Trp91, 

Phe21, Val272, His259, Asp273, Tyr269, Ile254, and Thr260. Figure 4(b) shows the Snake diagram with interacting 

residues in transmembrane helices. 

 

Figure 4 a) 2-D diagram shows residues involved in the binding pocket of the GPR109A model receptor. (b) 
Snake diagram showing different helixes with interacting residues shown in green color. 
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2.4. Docking analysis 

2D and 3D structures are visualized in Maestro software [25]. All the ligands were energy minimized 
and partial charges were added on OPLS-2005 software [26]. To understand the binding mode, nicotinic acid 
and its 80 derivatives were docked with GPR109A, by using FlexX software [27] which is used for batch 
docking. The docking result shows that binding energy for all the compounds was less than nicotinic acid 
which is a natural agonist. The best 6 compounds were selected for further docking analysis. The binding 
energy of the best compound with nicotinic acid is shown in Table 2 and their 2D structures are shown in 
Table 3.  

Table 2. Docking analysis of nicotinic acid and screened compounds with GPCR109A. 

Compounds 
Name 

Binding Energy 
(kcal/mol) 

Interacting 
Residues 

Bond Type 
Bond Distance 
(Å) 

Nicotinic acid -17.68 

Ile254 Aromatic HB 2.5 
Phe180 H-bond 1.83 

Phe180 π–π stacking 4.32 

Trp256 H-bond 1.89 

Trp256 π–π stacking 5.08 

2B -30.5487 

Trp91 π–π stacking 5.08 

Trp91 π–π stacking 5.08 

Phe180 π–π stacking 5.15 

Phe180 H-bond 2.08 
Ser181 H-bond 2.18 
Asp273 Aromatic HB 1.87 

Phe276 π–π stacking 4.73 

5J -27.1781 

Trp91 π–π stacking 4.71 

Ser178 H-bond(side chain) 1.59 
Ser179 H-bond 1.95 
Ser181 H-bond 2.16 
Phe180 H-bond 2.08 

3B -26.7115 

Phe21 π–π stacking 5.30 

Phe21 π–π stacking 5.30 

Tyr87 H-bond(side chain) 2.49 
Ser179 H-bond 2.05 

Phe180 π–π stacking 5.31 

4B -26.3793 

Ser179 H-bond(side chain 1.99 
Phe180 H-bond 2.44 
Ser181 H-bond 1.68 
Trp256 H-bond(side chain 2.11 

Trp256 π–π stacking 5.2 

Trp256 π–π stacking 5.43 

5E -26.32 

Ser178 H-bond 1.55 
Ser179 H-bond 1.97 
Phe180 H-bond 2.01 
Ser181 H-bond 2.02 
Asp273 H-bond(side chain 1.93 

Phe277 π–π stacking 5.06 

2L -25.95 

Trp91 π–π stacking 4.96 

Phe180 H-bond 2.17 
Ser181 H-bond 2.08 
Ile254 H-bond 1.69 
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The binding crevice for nicotinic acid was localized in the binding pocket (site) with trans-membrane 
helices 5 and 6. The docking result of Nicotinic acid gives binding energy of -17.68 Kcal/mol. The oxygen 
atom (acidic group) of nicotinic acid forms hydrogen bonds with the Hydrogen atom of Phe180 at TMH5 
and Trp256 at TMH6 having a bond distance of 1.89 Å and 1.83 Å respectively. The oxygen atom of Ile254 
forms aromatic hydrogen bond with the hydrogen atom of Nicotinic acid at TMH6 and nicotinic acid also 
forms two π–π interactions with Phe180 at TMH5 and Trp256 at TMH6 having a bond distance of 5.08 Å and 
4.32 Å respectively (Figure 5). 

Table 3. 2-Dimensional structures of nicotinic acid and ıts screened derivatives. 

Compound 
Name 

2 Dimensional Structure 
Compound 

Name 
2 Dimensional Structure 

Nicotinic 
Acid 

 

4B 

 

2B 

 

5E 

 

5J 

 

2L 

 

3B 

 

  

 

Figure 5. Nicotinic acid with its binding interactions in the binding pocket of the GPR109A receptor. The 
figure shows the docked pose of nicotinic acid within the binding pocket. The hydrogen bonds are 

represented by black dotted lines, π–π interactions with blue dotted lines and aromatic hydrogen bond 

interactions with purple dotted lines. 
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Out of 80 compounds, 78 compounds were found to have binding energy less than that of Nicotinic 
acid and only two compounds showed binding energy more than that of nicotinic acid i.e. compound 1P (N-
(thiazol-5-yl)-1H-1,2,4-triazole-3-carboxamide) and 1C ((S)-methyl 3-mercapto-2- (1H-1,2,4-triazole-3-
carboxamido) propionate) were having a binding energy of -17.0198 kcal/mol and -16.8273 kcal/mol 
respectively. All these ligands showed interactions with the GPCR109A which is similar to the interaction 
seen in nicotinic acid. It was found that the compounds 2B [(R)-methyl 2-(2-(1H-indol-3-yl) acetamido)-3-
(1H-indol-3-yl) propionate and 5J [N-(2H-benzo[d] [1, 2, 3] triazol-2-yl)-1H-pyrrole-2-carboxamide] having 
binding energy -30.54 kcal/mol and -27.17 kcal/mol respectively shows best binding interactions with 
GPR109A receptor. The binding crevice for N containing heterocyclic acids was localized in the binding 
pocket (site) with transmembrane helices 5, 6 and 7 and also ECL2 was critically involved in the ligand 
binding. 

New lead compound 2B forms hydrogen bonds with Phe180, Asp273, and Ser181 with a bond 
distance of 1.87 Å, 2.08 Å, and 2.18 Å. The Oxygen atom (ester Group) of the indole ring of compound 2B 
was bound to Phe180 and Ser181 at TMH5 via H-bond, whereas indole ring nitrogen was simultaneously 
bound to Asp273 at TMH7 via aromatic H- bond. The indole ring also forms π–π interactions with Phe276 at 
TMH7 and Phe180 at TMH5 (Figure 6(a)). 

 

Figure 6.  a) Docked pose of Compound 2B in the binding pocket of the GPCR109A receptor. (b) Compound 
5J in the binding pocket of the GPCR109A receptor. (c) Compound 3B in the binding pocket of the GPCR109A 
receptor. (d) Compound 4B in the binding pocket of the GPCR109A receptor. (e) Compound 5E in the binding 
pocket of the GPCR109A receptor. (f) Compound 2L in the binding pocket of the GPCR109A receptor. The 
figure shows the docking of the ligand within the active site. The GPR109A shown a ribbon diagram and all 
ligands are represented as ball and stick models. The hydrogen bonds are represented by black dotted lines, 

π–π interactions with blue dotted lines and aromatic hydrogen bond interactions with purple dotted lines. 
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Figure 6(b) shows that Compound 5J forms hydrogen bonds with Phe180, Ser179, Ser181, and Ser178 
with the bond distance of 2.08 Å, 1.95 Å, 2.16 Å, and 1.59 Å. In compound 5J, an oxygen atom (ester Group) 
of pyrrole was bound to Phe180 and Ser181 at TMH5 via H–Bond. The nitrogen atom of the pyrrole ring 
forms a hydrogen bond with Ser178 at ECL2. The nitrogen of the triazole ring bound to Ser179 at ECL2 via 
H-bond. 

In Figure 6(c) Compound 3B forms a hydrogen bond with Ser179 and Tyr87 having a bond distance of 
2.05 Å and 2.49 Å respectively. In compound 3B, an oxygen atom (ester group) of pyridine ring and indole 
ring was bound to Ser179 at ECL2 and Tyr87 at TMH2 via H-Bond. Pyridine ring and indole ring form π–π 
bonding with Phe180 at TMH5 and indole ring forms π–π bonding Phe21 at TMH1. 

Compound 4B forms H bond with Ser181, Trp256, Ser179, Phe180 having a bond distance of 1.68 Å, 
2.11 Å, 1.99 Å, 2.44 Å respectively. In Compound 4B, an oxygen atom (ester group) of the indole ring was 
bound to Ser181 at TMH5 and Trp256 at TMH7 via H bond, whereas oxygen atom of indole ring was bound 
to Phe180 via H-Bond. The nitrogen atom of the pyrazole ring forms a hydrogen bond with Ser179 at ECL2. 
The indole ring also forms π–π interactions with Trp256 at TMH6 (Fig 6(d)). 

Figure 6(e) shows that Compound 5E forms H bond with Ser181, Phe180, Ser179, Ser178 and Asp273 
having a bond distance of 2.02 Å, 2.01 Å, 1.97 Å, 1.55 Å and 1.93 Å respectively. In compound 5E, an oxygen 
atom (ester group) of the Pyrrole ring was bound to Ser181 and Phe180 at TMH5 via H-bond whereas an 
acidic group of phenyl ring was bound to Ser179 at ECL2 via H-bond. The nitrogen atom of the pyrrole ring 
was bound to Ser178 at ECL2 via H-Bond. Whereas the OH group of tyrosine forms H-bond with Asp273 at 
TMH7. Phe277 was embedded in phenyl ring via π–π stacking. 

In Figure 6(f), Compound 2L forms H-bond with Phe180, Ser181 and Ile254 having the bond distance 
of 2.08 Å, 2.17 Å and 1.69 Å respectively. In compound 2L oxygen atom (ester group) of the indole ring 
forms a hydrogen bond with Phe180 and Ser181 at TMH5. Whereas oxygen atom of Ile254 at TMH6 forms a 
hydrogen bond with the nitrogen atom of the indole ring. Trp91 was embedded in phenyl ring via π–π 
bonding. 

2.5. Simulation interaction analysis 

The thermodynamic stability of the complex system i.e. GPCR109A-2B [(R)-methyl 2-(2-(1H-indol-3-
yl) acetamido)-3-(1H-indol-3-yl) was examined using the parameters RMSD (Root Mean Square Deviation) 
(Figure 7) and RMSFs (Root Means Square Fluctuations) (Figure 8) using 1000 trajectory captured during 
molecular dynamic simulation [28]. For this simulation, a 100ns unconstrained simulation was performed on 
the docked complex structure of GPCR109A bound to best docked pose of compound 2B. Despite the initial 
structural arrangements of the docked complex, the average RMSD of the trajectories for bound protein 
backbone atoms showed relative stability. Figure 7 shows, the stable RMSD values of the atoms for docked 
compound 2B with the GPCR109A receptor. The RMSD analysis for GPCR109A indicates that they reach 
equilibration and oscillate around an average value after 40ns. The average RMSDs from 40ns to 100ns for 
compound 2B bound to GPCR109A receptor was 3.0 Å. 

 

Figure 7.  Root mean square deviations (RMSD) of GPR109A and lead compound 2B, during 100ns MD 
simulation. 
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Figure 8.  Root mean square fluctuation (RMSF) of the GPR109A model upon binding of lead compound 
2B. 

These RMSD results showed the relative stability of compound 2B bound to the GPCR109A receptor 
throughout the simulation. This result suggests that compound 2B undergoes a minimal structural 
conformational change during the 100ns simulations. Local protein quality was analyzed by measuring the 
time-averaged RMSF value of compound 2B after binding with the GPCR109A receptor against residue 
numbers based on 100ns trajectory data. The average RMSFs measured for compound 2B (Figure 8) bound to 
GPR109A was 1.7Å, which reveals the relative stability of compound 2B upon binding with GPCR109A. The 
protein-ligand interaction diagram during 100ns simulation for compound 2B bound to GPCR109A receptor, 
suggests that designed lead compound 2B shows a more binding pattern of hydrogen bonding, ionic 
interaction, hydrophobic interaction as well as water bridges. 

3. CONCLUSION 

The present study focuses on the novel nitrogen heterocycles as GPR109A agonists as potential anti-
hyperlipidemic agents. The protein 3D structure was built by using homology modeling. Then the model 
structure was refined by the energy minimization molecular dynamics methods. In our studies, the residues 
Ser181, Ser178, Phe180, Ser179, Phe276, Leu176, Trp91, Phe21, Val272, His259, Asp273, Tyr269, Ile254, and 
Thr260 are important for strong hydrogen bonding interaction with the substrate. From the molecular 
docking study, it was observed that among 80 ligands screened according to their binding energy, 
interaction pattern and their bond distances, it is found that new lead compound 2B is having more affinity 
compared to natural agonist nicotinic acid. From this study, it was clear that the interaction of Phe180 and 
Trp256 residues are more favorable to achieve stable conformation of compound 2B into the binding cavity 
of the GPR109A receptor. The graph of the binding pattern generated from the MD simulation study shows 
specific interactions with the reference compound nicotinic acid. 

Our study reveals that new lead compound 2B having more binding affinity, structural stability and is 
also favorable dynamically than other known compounds. From the above docking results, it can be 
concluded that the ester group of nitrogen-containing heterocyclic rings shows more interactions with the 
GPR109A receptor than an acidic group of pyridine ring which was present in nicotinic acid. The data 
combined with the model also suggests the possibility that some aromatic residues, such as Phe180, and 
Trp256, Ser179, Ser181plays an important role in the formation of a gateway that allows N containing 
heterocyclic acids to access the binding pocket. The current study helps in shedding light on the anti-
hyperlipidemic effects of nicotinic acid analogs. Data obtained from the study will serve as the reference for 
in vivo and in vitro studies. 

4. MATERIALS AND METHODS 

4.1. Homology modeling 

4.1.1. Template selection for GPR109A 

The sequence of GPR109A was retrieved from UniProt [29] database (Uniprot ID: Q8TDS4) searched 
against Protein Data Bank using the BLAST-p server [30] with specifically to Homo sapiens (Taxid: 9606). As 
a result, the X-ray crystal structure of the human P2Y1 receptor (PDB ID: 4XNW), with 2.7 Å resolution share 
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28.52 % identity with the sequence of GPR109A and it was considered as a template [31] for further studies. 
The pairwise sequence alignment was done for the sequence of GPR109A and template 4XNW using 
Maestro. 

4.1.2. 3D structure building of GPR109A and its validation 

SWISS-MODEL server [19] was used to generate homology models of GPR109A by taking backbone 
C-α atom information of the Human P2Y1 receptor crystal structure. The chain A of the template 4XNW was 
considered for homology modeling, as it shares the high sequence similarity with the GPR109A. Generated 
3D model structure of GPR109A was retrieved from the SWISS-MODEL server and used for energy 
minimization to obtain the stable confirmation. Further, the GPR109A model was then subjected to 
stereochemical validation using PROCHECK [20], PROSA Web server [21] and SAVES [22] were employed 
to select a high-quality model for docking studies. Ramachandran plot was generated for the model to 
visualize energetically allowed regions for backbone ψ (psi) and φ (phi) dihedral angles of amino acid 
residues using Maestro [25]. From the stereochemical validation study, the valid model of GPR109A was 
selected for further calculations. 

4.1.3. Preparation of GPR109A Model and Ligands 

Protein Preparation Wizard (PPW) [32] was used to refine the valid GPR109A model by applying the 
OPLS-2005 force field [26] with a root mean square deviation (RMSD) tolerance on C-α atom of GPR109A 
model 0.3 Å. The protonation and ionization state of basic and acidic groups amino acids were chosen using 
the PROPKA program [25] according to physiological pH 7.4. The 2D structures of nicotinic acid, 1, 2, 4-
triazole carboxylic acid, pyrrole-2-carboxylic acid, indole-3-acetic acid, pyrazole-3-carboxylic acid, and its 
derivatives were drawn on Marvin Sketch software [33]and visualized with Maestro. All the ligands were 
energy minimized using the OPLS-2005 force field in Maestro to get energetically favorable conformation. 

4.1.4. Molecular docking calculations 

To reveal the binding pattern of selected compounds and their derivatives within the binding cavity of 
the GPR109A model, we performed the molecular docking calculations. The binding cavity for the GPR109A 
model was mapped considering earlier reported amino acid residues [13] Ser181, Ser178, Phe180, Ser179, 
Phe276, Leu176, Trp91, Phe21, Val272, His259, Asp273, Tyr269, Ile254, and Thr260. The cavity of the 
GPR109A was sufficient for ligand conformations and calculations. All ligands were subjected to molecular 
docking calculations with the GPR109A model by using FlexX software [27]. All atoms from the GPR109A 
model are treated as rigid during docking calculations. FlexX uses incremental construction algorithm [34]. 
The docking parameters are kept at its default value of software and numbers of possible conformation for 
each derivative were generated. Based on docking score and ligand interaction analysis with the GPR109A 
receptor, the best poses for a given ligand having greater binding affinity toward GPR109A was selected as 
lead compounds. 

4.1.5. Molecular dynamic simulation 

Molecular Dynamic (MD) simulations were performed for the complex of GPR109A with lead 
molecule 2B having greater binding affinity (-30.54 kcal/mol). To determine the binding strength of ligands 
within the GPR109A binding pocket after docking calculation, MD simulation was run up to 100ns time 
using Desmond [28]. This process is useful to calculate forces, compute the motion of atoms. However, 
Desmond incorporates a more detailed temperature, pressure, volume system and has more functionality 
built-in for executing protein-ligand interactions. Using the system builder of Desmond in the Maestro 
program [35], the system for both complexes was immersed in the water-filled cubic box containing 7149 
water molecules using an extended simple point charge (SPC), a three-point water model within periodic 
boundary conditions. The total charge of the solvent system is neutralized by adding 16 chlorine ions (Cl-) to 
the complex systems. Energy minimization is a very essential step in MD and it is done using the steepest 
descent method. Cubic box type (with box size 10 Å) is considered for minimizing edge effects in a finite 
system to apply periodic boundary conditions. The atoms of the system to be simulated are put into the 
space-filling box, which is surrounded by translated copies of itself. OPLS-2005 force field (parameters used 
to describe the potential energy of a system) is chosen in this work which is an improved force field suited 
for molecular dynamics simulations of proteins. 
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