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ABSTRACT: Heterocyclic compounds present unique structural and physicochemical diversity. Especially, the 
aromatic heterocycliccompounds like indole exhibit anti-cancer properties by facilitating cancerous cell death. Drug 
discovery and development process relyto a large extent on the in silico identification of the putative targets and rational 
design of potentially therapeutic ligands. We propose a facile strategy of in silico drug designing hereby curating 
libraries having a functional group modification of the indole heterocyclic compounds with 2-chloro-N-(2-chloroethyl)-
N-methylethanamine. Subsequently, we compare the designed drugs with the existing alkylating Reference Listed 
Drugs (RLDs) of the USFDA. We computationally model the indole ring as a basic scaffold and induce 2-chloro-N-(2-
chloroethyl)-N-methylethanamine substitution on the C-3 of indole with experimentally available target DNA receptor 
to design an extensive library of 200 molecules. This was followed by extensive ligand-DNA docking studies to predict 
putative targets andADMET prediction of an optimized ligand. Our simple in silico strategy reveals that the designed 
compounds such as AGSPBM134, AGSPBM133, AGSPBM131, AGSPBM130, AGSPBM132 and AGSPBM019 
exhibitstructural similarity towards the RLD as shown by ECFP-6 fingerprints. We show that they pass all the similarity 
criteria of the physicochemical parameters with no violation of the Lipinski’s rule of five. We positthat these agents can 
potentially be a good choice for further synthesis in the development of novel anti-cancer agents. 

KEYWORDS: Indole; drug designing; molecular docking; computer-aided drug designing; ADMET. 

1.  INTRODUCTION 

Cancer remains the leading cause of premature death across the globe. In the US, it is the second most 
common cause of mortality amongst individuals. As per the 2019 report fromthe American Cancer Society, 
roughly 1,762,450 new cancer cases and 606,880 deaths due to cancerare expected in the coming years in the 
US alone [1]. By the year 2030, it is projected that there will be ~26 million new cancer cases and ~17 million 
cancer deaths per year [2]. International agency for research on cancer in 2018 (GLOBOCAN 2018) reported 
2,129,118, 210,537 and 1,157,294 cases in the USA, Turkey, and India respectively, with breast cancer being the 
predominant cancer type [3]. More than hundred distinct cancer kinds are currently identified: the carcinomas 
contribute ~90%, Leukemias and Lymphomas occur in ~8% of cases, while Sarcomas appear rarely [4]. Early 
diagnosis is a crucial factor in improving the outcomes of cancer patients [5]. Anticancer drugs therapy is 
generally classified into chemotherapy, hormonal therapy, and immunotherapy. Alkylating agents are drugs 
that are the oldest form of chemotherapy and were the first compounds to be identified asbeneficial in the 
treatment of cancer [6]. These anticancer agents hold an important position in the World Health Organization’s 
list of Essential Medicines for the treatment of cancer [7]. They are cytotoxic in nature and is known to actby 
threedifferent mechanisms:(1)Theycan form covalent cross-bridges between nucleotides in DNA. Cross-
linking helps resists DNA synthesis by inhibiting DNA strand separation for transcription. The alkylating 
agents bind preferentially at the N-7 position of guanine producing inter-strand with two different molecules 
while forming adducts and inhibiting DNA synthesis;(2)Alkylating drugs may also induce mutations due to 
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mispairing of the nucleotides;(3) Alkyl group of drugs may also attach with DNA bases facilitate DNA 
fragmentation[8].  

The 2-chloro-N-(2-chloroethyl)-N-methylethanamine is fatty nitrogen mustard first approved by 
USFDA and is now rarely used as an alkylating agent because of its poor selectivity.This led to the 
development of aromatic alkylating agents [9]. Chlorambucil, Cyclophosphamide, Melphalan HCl, Ifosfamide 
and Bendamustine HCl are few examples of USFDA approved nitrogen mustard derivatives having the 2-
chloro-N-(2-chloroethyl)-N-methylethanamine side chain [10-11]. On the other hand, heterocyclic compounds 
have versatile, but unique physicochemical properties, and are the active component of widely marketed 
anticancer drugs [12]. Among the current USFDA approved drugs, many heterocyclic anticancer drugs are 
available, including doxorubicin (Adriamycin®)[13], daunorubicin (Cerubidine®)[14], 5-fluorouracil 
(Efudix®)[15], etc.Few natural product alkylating agents like vinblastine and vincristine are also commonly 
used for treatment [16]. Recently, heterocyclic compounds having indole moiety have been shown to 
exhibitpromising anti-cancer potential [17]. Also, indole is a common pharmacophore for a large number of 
naturally occurring biomolecular compounds [18]. Naturally occurring Vinca alkaloids present indole 
moietyhaving anticancer activity.Several in silico drug design techniques including molecule docking by 
Glide[19], fingerprint analysis by Canvas[20], Cresset TorchLite for physicochemical descriptors[21], ADMET 
by QikProp [22] and Multivariate analysis [23] are used effectively to design and develop the in silico drug 
development successfully. Earlier studies show that the combination of nitrogen mustard with other natural 
scaffolds produces more effective anti-cancer agents with low side-effects. A novel nitrogen mustard-based 
hybrid – evodiamine have been recently reported to have anti-proliferative activity [24]. An alkylating agent 
was used in conjugation with natural alkaloid to give special chemical scaffold for enhancing activity and 
reducing the side effect of nitrogen mustards. Also, steroid-linked nitrogen mustard with an affinity for its 
receptor was successfully synthesized and can lead to highly selective and less toxic antineoplastic 
therapeutics [25]. Chlorambucil is a nitrogen mustard derivative combined with estradiol to get an estradiol-
chlorambucil hybrid for the treatment of breast cancer [26]. Some acridine-linked aniline mustards synthesized 
successfully for anticancer activity on the basis of DNA cross-linking mechanism[27]. 

In the current study, we employ the indole heterocyclic moiety as a potential pharmacophore after 
extensively perusingall heterocyclicanticancer compounds [28].We design a library of the hybrid indole 
pharmacophore with 2-chloro-N-(2-chloroethyl)-N-methylethanamine derivatives as potentially promising 
anti-cancer agents for therapeutic intervention. We further subjectthe designed molecules to in silico 
computational studies with the USFDA approved alkylating agents to find the sameness 
characterization.DNA is the crucial target for treatment in multiple pathophysiological conditions [29]. DNA-
Intercalators [30] are used as anticancer agents. DNA acts as a target for varied heterocyclic compounds other 
than indole which were reported previously as DNA groove binders and alkylating agents [31-33]. The scope 
of the current work further extends to the computational studies of these designed indole alkylating ligands 
on DNA as a target, to understand the DNA-intercalation with respect to USFDA Reference Listed drugs. 

2. RESULTS AND DISCUSSION 

In the present study,200 compounds molecular library designed with constant bis(2-chloroethyl)amine 
functional group at the 3rd position of an indole. Other position of substituted with a different functional 
group. Designed compounds and RLD arranged as per radial plot of physicochemical descriptors and selected 
for docking study. To understand the structural basis of the designed ligands binding to target each ligand 
and 7 USFDA approved Reference Listed Drugs (RLDs) were individually docked with the receptors at their 
active site using Glide program. The target DNA structure obtained from PDB (PDB ID: 1AXL) Solution 
NMR.The docking results revealed that all the designed compounds were energetically favorable in terms of 
Glide dock score (see Table 1). The results were described in the terms of Docking score, Glide evdw, Glide 
ecoul Glide Energy, Glide Emodel. The Glide docking score of the designed compounds was in the range from 
-8.93 to -7.971, where designed compound AGSPBM131 showed the lowest binding energy with -8.93  
compared with Bendamustine RLD -6.232. 

All the designed molecules and RLDs were docked in the DNA active site (see Figure 1). The designed 
indole derivatives showed a considerable affinity to the binding site. The similarity of designed indole 
derivatives was calculated with respect to the RLDs by using ECFP-6 fingerprints [34-35] (see Table 2). The 
generated results were rationally analyzed using Molecular Visualization Tool, Pymol and Discovery Studio 
[36-37]. 
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Table 1. Docking results of RLD and the designed molecules reveal that the designed indole derivatives 
compounds show Glide dock scores better than the RLD molecules. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

During similarity searching, Reference Listed Drugs are compared to designed compounds. Thus, 
similarity searching can be mimicked by systematically comparing different RLD having the same activity 
with each other and RLD to the designed library of indole derivatives. ECFP-6 fingerprint similarity score     
(see Table 2) for bendamustine found 74, for designed AGSPBM134, AGSPBM133 is 67 and for AGSPBM131, 
AGSPBM130 found 63 respectively. TPSA (Topological Polar Surface Area) givesoverall polar atoms or 
molecules, primarily oxygen and nitrogen, also including their attached hydrogen atoms. TPSA of designed 
representative AGSPBM131and reference Bendamustine molecule (see Table 2) found 68.9 and 58.4 are 
comparable.  

 

Figure 1. Glide docking representative poses of Bendamustine RLD and designed indole derivatives. 

Type Comp. No. 
Docking 

Score 
Glide 
evdw 

Glide 
ecoul 

Glide 
Energy 

Glide 
Emodel 

R Bendamustine -6.232 -32.118 -7.219 -39.337 -52.984 

R Melphalan -5.959 -26.339 -4.811 -31.150 -43.643 

R Chlorambucil -4.743 -30.510 -0.469 -30.979 -40.905 

R Cyclophosphamide -4.167 -26.230 -5.41 -31.639 -36.979 

R Mechloarmethamine -3.720 -18.615 -10.416 -29.0301 -35.319 

R Ifofsamide -3.555 -20.339 -6.413 -26.752 -30.904 

T AGSPBM131 -8.930 -36.602 -16.342 -52.943 -74.391 

T AGSPBM130 -8.612 -35.264 -21.087 -56.351 -81.715 

T AGSPBM134 -8.542 -37.635 -22.124 -59.759 -86.579 

T AGSPBM133 -8.314 -37.278 -11.891 -49.169 -59.939 

T AGSPBM132 -8.270 -35.673 -11.642 -47.315 -64.894 

T AGSPBM019 -8.232 -28.565 -22.087 -50.652 -63.416 

T AGSPBM054 -8.207 -34.944 -18.763 -53.707 -75.144 

T AGSPBM022 -8.184 -31.447 -16.101 -47.549 -61.046 

T AGSPBM138 -8.117 -33.25 -17.107 -50.357 -67.871 

T AGSPBM055 -7.971 -36.622 -12.589 -49.21 -64.384 
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Table 2. Comparison of the Bendamustine and designed molecules by ECFP-6 fingerprint similarity, TPSA, 
MR and molecular weight. 

 

After designing the molecules, we have evaluated ADME calculation by using alkylating agents drug 

as RLD for the assessment of drug-likeness as well as pharmacokinetic properties. A computational study for 

prediction of ADME properties by using QikProp (Schrödinger, LLC, New York, NY) software. The CNS 

activity, human oral absorption, Predicted aqueous solubility (QPlogS), Predicted IC50 value for the blockage 

of HERG K+ channels (QPlogHERG) and Prediction of binding to human serum albumin (QplogKhsa). The 

comparison of ADME descriptor value presented for Reference and designed molecule      (See Table 3). All 

the value of designed molecules is close to RLD showing druglike properties. 

Compound AGSPBM131 is very similar to Bendamustine RLD in permeability and enzymatic activity. 

Both reference and designed molecules show BBB permeability, CYP2C9 inhibitor and CYP3A4 inhibitor 

activity (See Table 4). Compound AGSPBM022 showing 0.36 mg/mL estimated aqueous solubility which is 

better than Bendamustine 0.09 mg/mL.  

The compound AGSPBM131 and AGSPBM130 among all designed molecules show good drug 

candidate compared to the RLD and follow the criteria for injectable preparation. Hence these compounds 

may have a good potential for eventual development as the injectable dosage form.   
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Table 3. ADME properties of RLD and selected the top 10 designed molecules. 

 

[a] Predicted central nervous system activity on a − 2 (inactive) to + 2 (active) scale; [b] Prediction of binding to human 
serum albumin (acceptable range − 1.5 to 1.5); [c] Predicted human oral absorption on 0–100% scale (> 80% is high and 
< 25% is poor). 

Table 4.  SwissADME result for solubility, permeability and enzyme activity. 

 

[a] ESOL: estimating aqueous solubility; [b] BBB: blood-brain barrier; [c] Pgp: P-glycoprotein; [d] CYP: Cytochrome 
P450. 

3. CONCLUSION 

In silico modeling can be effectively utilized and explored for drug designing and simulations that may 
help the medicinal chemists and drug discovery scientists to design drug-like candidates. These candidate 
ligands identified through in silico studies can then be essentially studied for their efficacy using relevant in 
vitro and in vivo models. 

The present research work was planned to design novel moieties derived from the indole scaffold 
combined with the alkylating agents to aid them as having anti-cancer potential. It was observed that the 
binding activity in DNA was not affected by the electronic properties. Indole analogs contain functional 
groups such as -OH and -NH2 exhibited higher docking score when compared to RLDs. It was observed that 
the compounds such as AGSPBM131, AGSPBM130, and AGSPBM134 exhibited a Glide XP docking score of -
8.930, -8.612 & -8.542, respectively, which is significantly higher than the score (-6.232) for RLD Bendamustine 
Hydrochloride drug. Furthermore, the ADME parameters were calculated by the QikProp of the complete 
library. These parameters give the best choice for the preparation of new hybrid indole derivatives as 
anticancer agents in future with more improved potency. These newly designed indole derivatives can thus 
act as the starting point for the design and development of a new class of indole-alkylating agent with 
improved safety, efficacy and bioavailability profile. This can drive the medicinal chemists to explore this 
pharmacophore for the design of a more potent agent for the treatment of cancer when compared to existing 
RLDs. 
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Based on thorough literature survey and to the best of our knowledge, this is the first report of 
modification on the indole pharmacophore to obtain a novel library of indole-alkylating agents with the fixed 
2-chloro-N-(2-chloroethyl)-N-methylethanamine side chain at the C-3 position of the indole nucleus with 
appropriate functional group modifications at other positions on the pharmacophore. 

4. MATERIALS AND METHODS 

4.1. Chemistry 

Indole nucleus is a naturally occurring popular aromatic heterocycle having very unique properties of 
binding towards enzymes, proteins, etc., and its binding is reversible in nature. Indole prefers to react mainly 
through the 3-position by electrophilic substitution. Figure 2A shows 3-substituted scaffold of indole taken for 
the study is represented and electron distribution compared on Figure 2B, indole and Figure 2C, substituted 
indole [38-40]. 

 

Figure 2. (A) Basic scaffold for study. (B) Electron distribution on indole (C) Electron distribution on 3- 
substituted indole. 

4.2. Designing of library and screening 

In drug designing strategies, the molecular features of designed molecules determine their 
physicochemical properties. The functional groups were selected as per the Structure-Activity Relationship 
(SAR) of the reported anti-cancer agents available in the market through systematic literature survey [41]. A 
library of 200 indole compounds was designed and screened using the TorchLite 10.5.0. software [42], which 
is an easy-to-use interface for a ligand-based application that works on the 3D topology of molecules, sorts 
and classifies the molecules based on their electrostatic properties and shape similarities. It arranges the 
designed compounds based on their physicochemical properties using the multi-parametric scoring function 
to prioritize compounds. The eXtened Electron Distribution (XED) gives the electrostatic interaction pattern 
shown in Figure 3 of molecules which can be effectively analyzed to compare and contrast reference and 
designed molecules. 

 

Figure 3. Comparison of eXtened Electron distribution between Bendamustine RLD and designed 
AGSPBM131, AGSPBM130, AGSPBM134, AGSPBM133, AGSPBM132 molecules. 

A B C 
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Field properties give an actual 'personality ' to the molecules in term of the full range of interactions 
with the target DNA. The protein can interact with a ligand in terms of hydrogen bond (H-bond) donor, H-
bond acceptor, hydrophobic, steric and van der Waals (vdW) attractive forces. The explanatory field point 
comparison of the reference and the designed molecule is shownin Figure 4. 

 

Figure 4. Fields relating to the structure, properties, and activity of reference and test molecules containing 
H-bond donor, H-bond acceptor, hydrophobic, steric vdW attractive interactions. 

4.3. Cresset TorchLite and MVA analysis 

The physicochemical parameters established for the designed and reference ligands by Cresset 
TorchLite. Based on electrostatics, physicochemical descriptors (molecular weights, atoms, 2D similarity, 
SLogP, TPSA, etc.), the shape of substructures and radial plot molecules were aligned. The default 
conformation hunt and alignment values were selected and alignment generation was initiated. After 
alignment, the data generated included calculated physicochemical properties, molecule role. Molecules were 
arranged based on the radial plot and on the scatter plot shown in Figure 5. 

 

Figure 5. The scattered plot of the radial plot (representative value of molecule) vs. descriptor for 6 
references and 200 designed molecules to choose the maximum population close to the exact reference listed 
drug. 
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The designed ligands were aligned and compared with reference molecules. Multivariate analysis 

performed for radial plot descriptors of reference and designed molecules and shown in Figure 6. 

 

Figure 6. The standard deviation of individual molecules plotted against descriptor like Radial plot, 
Molecular weight, Atoms, 2D similarity, sLogP, TPSA (Topological polar surface area) with 95 % CI of the 
mean. 

4.4. Reference drugs 

Bendamustine, Carmustine, Chlorambucil, Cyclophosphamide, Ifosfamide, Mechlorethamine, and 

Melphalan are the USFDA approved nitrogen mustard drugs that were selected as the reference ligands for 

evaluating the activity of the designed 3 substituted indole alkylating agents [43]. 

4.5. Ligand preparation 

The 2D structures of the designed Indole alkylating agent derivatives were drawn by using ChemDraw 

Ultra 12.0 (PerkinElmer Informatics) and stored in a library in sdf structure format. All the 2D sdf structures 

were converted to the 3D structure by using the 3D optimization tool i.e., Ligprep of the Schrodinger suit. The 

drawn ligands were optimized for geometry by using the OPLS-2005 (Optimized Potentials for Liquid 

Simulations) force field with the Steepest Descent method followed by the truncated Newton Conjugate 

gradient protocol. All structures with Default settings were processed for proper chirality and low energy in 

3D form. Furthermore, the extra precision (XP) was done for the processed ligands by using the Glide module 

of the Schrödinger suite [44]. 

4.6. Protein selection/preparation 

In structural biology, biomolecular docking (DNA-Ligand docking) is becoming a popular approach to 

understand the biomolecular interactions responsible for affinity to the target. In this study, we selected the 

DNA target (PDB ID: 1AXL) from the Protein Data Bank [45]. The solution NMR structure of DNA was 

extracted from the protein data bank(https://www.rcsb.org/structure/1axl). The selected target was the 

solution conformation of the (-)-trans-anti-[BP] DG adduct opposite to a deletion site in the DNA duplex 

D(CCATC-[BP]G-CTACC)D(GGTAG—GATGG, which was considered for docking study. The 1AXL DNA 

structure is as shown in Figure 7. 

https://www.rcsb.org/structure/1axl
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Figure 7. 1AXL (-)-trans-anti-[BP]DG adduct DNA as a target. 

4.7. Grid generation at the active site 

In structure-based drug design, the identification of the active site is a crucial step. The receptor grid 
generation was used for the grid generation in the Glide software. After identification of the active site region, 
the grid box was prepared in such a way that it enclosed the entire active site. In this process, all the other 
options were kept as default [46]. 

Subsequently, a multivariate analysis was performed on the compounds according to their similarity to 
the reference molecules. It was observed that the majority of the studied ligands exhibited a closeness towards 
the Bendamustine molecule [47]. 

4.8. Molecular docking 

After energy minimization was performed using the Schrödinger Glide searches for possible 
conformation of the ligand in the active-site region of the receptor, using a set of filters [48]. Using extra 
precision (XP) glide methodology, the candidate ligands were semi-quantitatively ranked according to their 
capability to bind to a particular conformation of the protein receptor[49]. By using the default settings, the 
designed ligand was docked with the 1AXL protein using the XP mode in the Schrödinger’s glide software. 
The hydrophobic and H-bondinteractionsof the best-docked complex were identified using the Pymol and 
BIOVIA discovery studio. 

4.9. Molecular mechanics/Generalized born surface area (MM/GBSA) 

The MM/GBSA is force-field based method that computes the free energy of binding based on the 
Generalized Born continuum solvent model[50-51], as opposed to also modelling free energies of single 
entities [52].The ligand strain energies and ligand binding of the docked receptor-ligand complexes were 
calculated according to the molecular mechanics combined with the Generalized Born Model and Solvent 
Accessibility method (MM/GBSA), using Prime module of the Schrödinger software. The binding free energy 
(ΔGbind) was calculated using the following Equation 1 [53]. 

ΔGbind = ΔEMM + ΔG SOL + ΔGSA                                                                           (Eq. 1) 

Where, ΔEMM is the difference in energies between the protein-ligand complex and the sum of the 
energies of the unliganded protein and free ligand, using the OPLS force field [54-55]. ΔGSOL is the difference 
in the GBSA solvation energy of the protein–inhibitor complex and the sum of the solvation energies for the 
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unliganded protein and ligand. ΔGSA is the difference in surface area energies for the complex structure and 
the sum of the surface area energies for the non-liganded protein and ligand. 

4.10. In silico ADMET prediction 

After designing and studying the physicochemical properties with reference to the RLD drugs, it was 
mandatory to match the pharmacokinetics properties i.e. absorption in the body, distribution into the different 
compartments, metabolism by organs, and elimination through the body [56]. It was necessary to perform a 
computational study to predict the ADME parameters of the designed molecules to prioritize the molecules 
for synthesis [57]. Hence ADME study is an essential step for checking the drug-likeness. ADME study of 
selected whole docked library was carried out using the QikProp (Schrödinger, LLC, New York, NY) [58]. In 
the present study, properties like molecular weight, predicted central nervous system activity, octanol/water 
partition coefficient, aqueous solubility, IC-50 value for blockage of HERG K+ channels, cell permeability, 
binding of a drug to human serum albumin, number of hydrogen bond donors and acceptors were calculated 
for each compound and the drug-likeness was evaluated[59]. Moreover, the properties of the ligand with 
respect to toxicity and carcinogenicity were analyzed online using the ADMET SAR and Swiss ADME [60-61]. 
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